-
精神活性药品对人体中枢神经系统具有强烈抑制或兴奋作用,部分具有强烈成瘾性,主要包括抗焦虑药物、镇静安眠药物以及非法毒品等[1-2],包括苯二氮卓药物在内的精神活性药品使用量呈现逐年上升的趋势[3]. 与其他药物类似,许多精神活性药品并不能完全被人体吸收代谢,而是随排泄物进入城市污水处理系统,不能被城市污水处理厂消除完全的部分最终随污水厂出水排入受纳水环境[4-5]. 持续排放的精神活性药品对各级水生生物都具有不同程度的生态毒性效应. 研究表明,氯胺酮(948 μg·L−1)能够导致青鳉幼鱼(Oryzias latipes)行为改变,诱导其氧化应激反应,并扰乱乙酰胆碱酯酶的表达[6]. 低暴露浓度下,吗啡(0.07 ng·g−1)能够降低淡水贻贝(Elliptio complanata)组织中血清素水平和乙酰胆碱酯酶活性[7],而地西泮(100 μg·L−1)能够抑制大型蚤(Daphnia magna)的趋光行为并诱导其繁殖增强[8].
有学者采用固相萃取方法,结合液相色谱-质谱,广泛调查了环境水样中多种精神活性药品的污染水平. 结果显示,甲基苯丙胺、氯胺酮、可卡因、阿普唑仑、劳拉西泮、地西泮和咖啡因等精神活性药品作为新型污染物在污水处理厂进水、出水以及地表水中普遍检出[9-12]. 其中,甲基苯丙胺、地西泮和咖啡因在污水处理厂进水检出浓度可达2000、1180、120000 ng·L−1 [10, 13];氯胺酮在医院废水的检出浓度高达10000 ng·L-1[11]. 目前,有关精神活性药品在沉积物和污泥中的提取方法研究较少,采用超声萃取[14-15]或加速溶剂萃取[16-17]法结合固相萃取净化,提取分析甲基苯丙胺、氯胺酮、可卡因、地西泮等少数几种精神活性药品在沉积物和污泥中的含量. 事实上,沉积物和污泥作为物质的储存库是环境水体的重要组成部分[18]. 甲基苯丙胺、吗啡、可卡因等精神活性药品通过现行的污水处理工艺并不能完全降解,而是被污泥吸附并持续缓慢地向环境中释放,成为环境水体中精神活性药品的重要污染源[19-20]. 此外,由于制贩毒活动往往存在一定的隐蔽性,通过检测河流不同深度沉积物中甲基苯丙胺、吗啡等非法毒品的含量,可以溯源追踪较早排放的非法毒品,为锁定制贩毒窝点,举证制贩毒活动提供线索.
由于已报道的提取方法往往只关注少数几种精神活性药品,并且提取过程繁琐,耗时长,需要借助大型提取设备,具有一定的局限性. 因此,本研究开发了一种同时快速灵敏检测沉积物和污泥中多种精神活性药品的QuEChERS(quick, easy, cheap, effective, rugged, and safe)提取方法. 比较了开发的QuEChERS提取方法和已报道的超声萃取、加速溶剂萃取方法的效果,并通过考察加标回收率、相对标准偏差和方法定量限对方法的准确度、精密度和灵敏度进行了验证. 本研究开发的提取分析方法能够用于环境沉积物和污泥样品的检测,为环境水体中精神活性药品的来源、含量、分配和降解研究提供方法支持.
QuEChERS-液相色谱串联质谱检测沉积物和污泥中精神活性药品残留
Simultaneous determination of psychoactive drugs in sediment and sludge using QuEChERS extraction coupled with ultrahigh performance liquid chromatography-tandem mass spectrometry
-
摘要: 本研究建立了沉积物和污泥中15种典型精神活性药品的QuEChERS(quick,easy,cheap,effective,rugged and safe)提取和超高效液相色谱-三重四极杆质谱(UPLC-MS/MS)痕量分析方法. 冻干后的沉积物或污泥样品采用含1%乙酸的乙腈溶液提取,加入无水硫酸镁和乙酸钠促进提取和溶液分层,提取液通过无水硫酸镁/PSA/C18混合分散固相萃取(d-SPE)试剂进行净化,氮吹浓缩后供UPLC-MS/MS检测. 通过建立的痕量分析方法,15种目标精神活性药品在沉积物中的检出限(MDLs)和定量限(MQLs)分别为0.01—0.24 ng·g−1和0.04—0.80 ng·g−1,当加标浓度为5、20、50 ng·g−1时,回收率为56%—121%、57%—116%和58%—115%,相对标准偏差小于15%;在污泥中的检出限(MDLs)和定量限(MQLs)分别为0.06—0.83 ng·g−1和0.22—2.78 ng·g−1,当加标浓度为20、80、200 ng·g−1时,回收率为55%—117%、64%—132%和74%—135%,相对标准偏差小于12%. 采用该方法,在环境沉积物和污泥中分别检出8种和4种精神活性药品,浓度范围分别为0.051—1.395 ng·g−1干重和<MQLs—45.119 ng·g−1干重. 该方法快速、准确、灵敏度高,不需要借助专门的提取设备,适合同时快速检测沉积物和污泥中多种精神活性药品,为环境水体中痕量精神活性药品的追踪溯源和风险评估提供方法支持.
-
关键词:
- QuEChERS /
- 超高效液相色谱-三重四极杆质谱 /
- 精神活性药品 /
- 沉积物 /
- 污泥.
Abstract: The present study developed analytical method based on QuEChERS (quick, easy, cheap, effective, rugged and safe) extraction and ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) determination, to simultaneously analyze 15 typical psychoactive drugs in sediment and sludge. The frozen dried sediment or sludge sample was extracted with acetonitrile (containing 1% acetic acid), meanwhile, the anhydrous magnesium sulfate and sodium acetate were added to accelerate extraction and solvent layering. Then, the extraction solution was cleaned-up by dispersive solid-phase extraction (SPE) using anhydrous magnesium sulfate/PSA/C18 sorbents. Finally, the extract was concentrated with nitrogen and detected by UPLC-MS/MS. Using the proposed analytical method, the method detection limits (MDLs) and method quantification limits (MQLs) of 15 target psychoactive drugs in sediment were ranged at 0.01—0.24 ng·g-1 and 0.04—0.80 ng·g-1, respectively. The recoveries of 15 target psychoactive drugs at the range of 56%—121%, 57%—116% and 58%—115% with the relative standard deviation (RSD) lower than 15%, in the sediment samples with spiked levels of 5 ng·g−1, 20 ng·g−1 and 50 ng·g−1, respectively. The method detection limits (MDLs) and method quantification limits (MQLs) of 15 target psychoactive drugs in sludge were ranged at 0.06—0.83 ng·g−1 and 0.22—2.78 ng·g−1, respectively. The recoveries of 15 target psychoactive drugs at the range of 55%—117%, 64%—132% and 74%—135% with the RSD lower than 12%, in the sludge samples with spiked levels of 20 ng·g−1, 80 ng·g−1 and 200 ng·g−1, respectively. There were 8 and 4 target psychoactive drugs detected in the environmental sediment and sludge samples, respectively, with the concentrations at the range of 0.051—1.395 ng·g−1 and <MQLs—45.119 ng·g−1 dry weight. The developed analytical method is rapid, accurate and sensitive, and with no need for special extraction equipment, which can be applied to simultaneously and rapidly detect various psychoactive drugs in sediment and sludge. The proposed analytical method supply method support for the tracking and risk assessment of trace psychoactive drugs in sediment and sludge of aquatic environment. -
表 1 目标精神活性药品基本物理化学性质
Table 1. Basic information and physicochemical properties of target psychoactive drugs
化合物
CompoundCAS 分子式
Molecular formulalg Kow lg Koc pKa 甲基苯丙胺 537-46-2 C10H15N 2.07 3.21 9.87 氯胺酮 6740−88-1 C13H16ClNO 2.18 3.22 7.5 吗啡 57-27-2 C17H19NO3 0.89 3.47 9.12 可待因 76-57-3 C18H21NO3 1.19 3.12 9.19 可卡因 50-36-2 C17H21NO4 2.30 3.28 8.85 咪达唑仑 1622−61-3 C18H13ClFN3 4.33 5.59 5.5 硝西泮 146-22-5 C15H11N3O3 2.25 3.79 2.61;11.9 劳拉西泮 846-49-1 C15H10Cl2N2O2 3.98 3.30 13.0 阿普唑仑 28981−97-7 C17H13ClN4 3.87 6.33 5.08;18.3 氯硝西泮 1622−61-3 C15H10ClN3O3 2.53 4.02 1.86;11.89 三唑仑 28911−01-5 C17H12Cl2N4 2.42 6.55 4.32;10.08 地西泮 439-14-5 C16H13ClN2O 2.82 4.05 3.4 氯氮卓 58-25-3 C16H14ClN3O −1.57 5.79 4.8 美沙酮 76-99-3 C21H27NO 3.93 4.86 8.94 咖啡因 58-08-2 C8H10N4O2 −0.07 1.00 −0.92 注:Kow:正辛醇-水分配系数;Koc:有机碳吸附系数;pKa:酸离解常数.
Note: Kow: N-octanol-water partition coefficient; Koc: organic carbon adsorption coefficient; pKa: logarithm value of acid dissociation constant.表 2 目标精神活性药品质谱参数和保留时间
Table 2. UPLC-MS/MS mass transitions and retention times of the target psychoactive drugs
化合物
Compound母离子
Parent ion(m/z)子离子
Daughter ion (m/z)碰撞能/eV
CE碎裂电压/V
Fragmentor保留时间/min
RT内标
Interior label甲基苯丙胺
Methamphetamine150.1 91.1* 29 95 2.005 甲基苯丙胺-d5
Methamphetamine-d5119.1 10 氯胺酮
Ketamine238.1 125.0* 39 110 2.226 氯胺酮-d4
Ketamine207.1 15 吗啡
Morphine286.1 152.1* 76 175 1.028 吗啡-d3
Morphine-d3165.1 50 可待因
Codeine300.2 165.1 58 170 1.760 可待因-d3
Codeine-d3215.1* 30 可卡因
Cocaine304.2 82.1 35 140 2.606 可待因-d3
Codeine-d3182.1* 23 咪达唑仑
Midazolam326.1 291.2* 33 195 3.057 阿普唑仑-d5
Alprazolam-d5249.2 46 硝西泮
Nitrazepam282.0 236.1* 28 155 3.567 硝西泮-d5
Nitrazepam180.1 48 劳拉西泮
Lorazepam321.0 275.1* 28 145 3.618 阿普唑仑-d5
Alprazolam-d5229.1 38 阿普唑仑
Alprazolam309.1 205.1 48 200 3.635 阿普唑仑-d5
Alprazolam-d5281.2* 29 氯硝西泮
Clonazepam316.0 241.1 43 155 3.672 吗啡-d3
Morphine-d3270.1* 30 三唑仑
Triazolam343.1 308.1* 30 205 3.688 阿普唑仑-d5
Alprazolam-d5315.1 35 地西泮
Diazepam285.1 154.1 32 175 4.252 吗啡-d3
Morphine-d3193.1* 38 氯氮卓
Chlordiazepoxide300.1 282.1* 29 165 2.811 氯胺酮-d4
Ketamine227.1 29 美沙酮
Methadone310.2 105.0 35 125 3.549 美沙酮-d9
Methadone-d9265.3* 15 咖啡因
Caffeine195.0 138.1 23 120 1.924 氯胺酮-d4
Ketamine110.1 28 甲基苯丙胺-d5
Methamphetamine-d5155.1 121.1 10 95 2.000 — 92.1* 23 氯胺酮-d4
Ketamine-d4242.1 129.0* 35 110 2.220 — 211.1 14 吗啡-d3
Morphine-d3289.2 152.0* 77 175 1.022 — 165.1 49 可待因-d3
Codeine-d3303.2 215.1* 28 170 1.754 — 165.1 55 硝西泮-d5
Diazepam-d5287.1 241.2* 29 175 3.545 — 185.1 41 阿普唑仑-d5
Alprazolam-d5314.1 210.1 46 170 3.624 — 286.2* 29 美沙酮-d9
Methadone-d9319.3 268.2* 15 135 3.543 — 105.0 30 注:标*的离子为定量离子.
Note: The * refers to the quatification ion.表 3 目标精神活性药品在沉积物中的回收率、方法检出限、方法定量限
Table 3. Recoveries (n=3, %±relative standard deviation), method detection limits (MDLs) and method quantitation limits (MQLs) of the target psychoactive drugs from sediment
沉积物
Sediment污泥
Sludge化合物
Compound加标回收率/%
RecoveryMDLs/
(ng·g−1)MQLs/
(ng.g−1)加标回收率/%
RecoveryMDLs/
(ng·g−1)MQLs/
(ng·g−1)5 ng·g−1 20 ng·g−1 50 ng·g−1 20 ng·g−1 80 ng·g−1 200 ng·g−1 甲基苯丙胺 107±3 95±2 97±2 0.02 0.07 101±1 120±1 115±1 0.06 0.22 氯胺酮 116±2 101±4 103±2 0.03 0.08 107±1 124±1 121±3 0.14 0.48 吗啡 121±5 116±3 115±1 0.24 0.80 113±9 132±2 135±4 0.83 2.78 可待因 118±5 105±1 107±1 0.06 0.21 105±2 129±1 128±3 0.28 0.94 可卡因 68±14 57±7 60±9 0.01 0.04 55±9 64±6 60±6 0.45 1.51 咪达唑仑 77±9 65±3 68±3 0.02 0.08 65±6 79±10 89±5 0.10 0.35 硝西泮 97±6 88±2 96±1 0.12 0.40 96±2 108±2 114±2 0.51 1.70 劳拉西泮 83±9 83±6 85±3 0.11 0.36 109±3 131±2 129±4 0.64 2.12 阿普唑仑 109±1 104±6 110±1 0.07 0.22 117±1 127±1 129±2 0.16 0.52 氯硝西泮 75±14 83±3 99±7 0.12 0.39 105±12 113±7 120±4 0.32 1.07 三唑仑 97±2 90±3 90±1 0.01 0.04 115±5 131±2 130±4 0.07 0.25 地西泮 66±15 61±9 71±7 0.07 0.24 99±6 113±7 132±6 0.21 0.71 氯氮卓 56±10 61±5 58±6 0.06 0.20 58±9 70±1 74±1 0.15 0.50 美沙酮 109±1 95±4 96±2 0.03 0.09 102±2 118±2 111±1 0.23 0.76 咖啡因 87±4 66±3 60±3 0.14 0.46 92±5 86±3 76±1 0.13 0.44 注:粗体表示化合物回收率超过70%—130%范围. Note: Bold type refers the recovery value out of the range of 70%—130%. -
[1] 邓洋慧, 郭昌胜, 殷行行, 等. 太湖入湖河流中精神活性物质污染特征与生态风险 [J]. 生态毒理学报, 2020, 15(1): 119-130. doi: 10.7524/AJE.1673-5897.20191027001 DENG Y H, GUO C S, YIN X X, et al. Pollution characteristics and ecological risks of psychoactive substances in rivers entering Taihu Lake [J]. Asian Journal of Ecotoxicology, 2020, 15(1): 119-130(in Chinese). doi: 10.7524/AJE.1673-5897.20191027001
[2] FERNÁNDEZ-RUBIO J, RODRÍGUEZ-GIL J L, POSTIGO C, et al. Psychoactive pharmaceuticals and illicit drugs in coastal waters of North-Western Spain: Environmental exposure and risk assessment [J]. Chemosphere, 2019, 224: 379-389. doi: 10.1016/j.chemosphere.2019.02.041 [3] GONZÁLEZ-MARIÑO I, CASTRO V, MONTES R, et al. Multi-residue determination of psychoactive pharmaceuticals, illicit drugs and related metabolites in wastewater by ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography A, 2018, 1569: 91-100. doi: 10.1016/j.chroma.2018.07.045 [4] KOSJEK T, PERKO S, ZUPANC M, et al. Environmental occurrence, fate and transformation of benzodiazepines in water treatment [J]. Water Research, 2012, 46(2): 355-368. doi: 10.1016/j.watres.2011.10.056 [5] CAUSANILLES A, RUEPERT C, IBÁÑEZ M, et al. Occurrence and fate of illicit drugs and pharmaceuticals in wastewater from two wastewater treatment plants in Costa Rica [J]. Science of the Total Environment, 2017, 599/600: 98-107. doi: 10.1016/j.scitotenv.2017.04.202 [6] LIAO P H, YANG W K, YANG C H, et al. Illicit drug ketamine induces adverse effects from behavioral alterations and oxidative stress to p53-regulated apoptosis in medaka fish under environmentally relevant exposures [J]. Environmental Pollution, 2018, 237: 1062-1071. doi: 10.1016/j.envpol.2017.11.026 [7] GAGNÉ F, ANDRÉ C, GÉLINAS M. Neurochemical effects of benzodiazepine and morphine on freshwater mussels [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2010, 152(2): 207-214. [8] RIVETTI C, CAMPOS B, BARATA C. Low environmental levels of neuro-active pharmaceuticals alter phototactic behaviour and reproduction in Daphnia magna [J]. Aquatic Toxicology, 2016, 170: 289-296. doi: 10.1016/j.aquatox.2015.07.019 [9] METCALFE C, TINDALE K, LI H X, et al. Illicit drugs in Canadian municipal wastewater and estimates of community drug use [J]. Environmental Pollution, 2010, 158(10): 3179-3185. doi: 10.1016/j.envpol.2010.07.002 [10] CHIAIA A C, BANTA-GREEN C, FIELD J. Eliminating solid phase extraction with large-volume injection LC/MS/MS: Analysis of illicit and legal drugs and human urine indicators in US wastewaters [J]. Environmental Science & Technology, 2008, 42(23): 8841-8848. [11] LIN A Y C, LEE W N, WANG X H. Ketamine and the metabolite norketamine: Persistence and phototransformation toxicity in hospital wastewater and surface water [J]. Water Research, 2014, 53: 351-360. doi: 10.1016/j.watres.2014.01.022 [12] WU M H, XIANG J J, QUE C J, et al. Occurrence and fate of psychiatric pharmaceuticals in the urban water system of Shanghai, China [J]. Chemosphere, 2015, 138: 486-493. doi: 10.1016/j.chemosphere.2015.07.002 [13] van der VEN K, KEIL D, MOENS L N, et al. Neuropharmaceuticals in the environment: Mianserin-induced neuroendocrine disruption in zebrafish (Danio rerio) using cDNA microarrays [J]. Environmental Toxicology and Chemistry, 2006, 25(10): 2645-2652. doi: 10.1897/05-495R.1 [14] HU P, GUO C S, ZHANG Y, et al. Occurrence, distribution and risk assessment of abused drugs and their metabolites in a typical urban river in North China [J]. Frontiers of Environmental Science & Engineering, 2019, 13(4): 94-104. [15] ÁLVAREZ-RUIZ R, ANDRÉS-COSTA M J, ANDREU V, et al. Simultaneous determination of traditional and emerging illicit drugs in sediments, sludges and particulate matter [J]. Journal of Chromatography A, 2015, 1405: 103-115. doi: 10.1016/j.chroma.2015.05.062 [16] LANGFORD K H, REID M, THOMAS K V. Multi-residue screening of prioritised human pharmaceuticals, illicit drugs and bactericides in sediments and sludge [J]. Journal of Environmental Monitoring, 2011, 13(8): 2284-2291. doi: 10.1039/c1em10260e [17] STEIN K, RAMIL M, FINK G, et al. Analysis and sorption of psychoactive drugs onto sediment [J]. Environmental Science & Technology, 2008, 42(17): 6415-6423. [18] 鲍林林, 李叙勇. 河流沉积物磷的吸附释放特征及其影响因素 [J]. 生态环境学报, 2017, 26(2): 350-356. BAO L L, LI X Y. Release and absorption characteristics of phosphorus in river sediment and their influential factors [J]. Ecology and Environmental Sciences, 2017, 26(2): 350-356(in Chinese).
[19] CHIAVOLA A, TEDESCO P, BONI M R. Fate of selected drugs in the wastewater treatment plants (WWTPs) for domestic sewage [J]. Environmental Science and Pollution Research International, 2019, 26(2): 1113-1123. doi: 10.1007/s11356-017-9313-x [20] YADAV M K, GERBER C, SAINT C P, et al. Understanding the removal and fate of selected drugs of abuse in sludge and biosolids from Australian wastewater treatment operations [J]. Engineering, 2019, 5(5): 872-879. doi: 10.1016/j.eng.2019.07.012 [21] ZHONG Y H, CHEN Z F, LIU S S, et al. Analysis of azole fungicides in fish muscle tissues: Multi-factor optimization and application to environmental samples [J]. Journal of Hazardous Materials, 2017, 324: 535-543. doi: 10.1016/j.jhazmat.2016.11.024 [22] YAO L, ZHAO J L, LIU Y S, et al. Simultaneous determination of 24 personal care products in fish muscle and liver tissues using QuEChERS extraction coupled with ultra pressure liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometer analyses [J]. Analytical and Bioanalytical Chemistry, 2016, 408(28): 8177-8193. doi: 10.1007/s00216-016-9924-y