-
全氟及多氟烷基化合物(per- and polyfluoroalkyl substances, PFAS)是一类人工合成的有机氟化合物,其结构通常由强极性的头部官能团和其烷基链上的每个(或大部分)氢原子被氟原子取代发弱极性烷烃尾链所构成[1]. 典型PFAS如全氟辛基磺酸(PFOS)和全氟辛酸(PFOA)的C-F链具有疏水性,末端官能团磺酸基团或羧酸基团具有亲水性[2],独特的两性结构使其被广泛应用于防火泡沫、镀铬和防污涂层等领域[3]. C—F链上的C—F键键能高达460 kJ·mol−1,具有较高的化学和热稳定性[4],使得PFAS在环境中持久不易降解[5— 8].
一些研究报道,地下水和地表水中PFAS的污染水平高达数百ng·L−1至数个μg·L−1,工业废水中PFAS水平可达数十mg·L−1[9— 11],在一些人类及工业活动较为稀少的区域如北极圈冰雪中依然能检测到一定浓度的PFAS [12]. 尽管典型的PFOS与PFOA已经被列入斯德哥尔摩公约,其生产和使用被限制,但是过去数十年的使用已经对人类健康和生态造成了许多负面影响[13—15]. 2016年,美国环境保护署(EPA)颁布了关于PFAS的饮用水健康报告水平:饮用水中PFOS和PFOA浓度(单个或综合浓度)安全阈值为70 ng·L−1[16]. 但仍有不少地区的水域中PFAS浓度超过该阈值[17]. 目前,中国已将PFOS和PFOA列入《优先控制化学品名录》中[18— 19]. 一些新型PFAS,如全氟-2-丙氧基丙酸(GenX)、氯代全氟烷基醚磺酸(F53B)、氟调聚磺酸(FTS))及短链PFAS(C4-7 PFSA和PFCA),作为典型PFAS的替代品逐渐被广泛使用,也引起研究人员的关注[20— 21]. 虽然目前这些物质的毒性和持久性尚不明确,但是它们的使用在一定程度上也增加了环境中PFAS的总量. 开发高效的治理技术去除水环境中传统和新型PFAS,将在未来成为水环境治理的重点之一. 表1列出了一些目前常见的PFAS及其基本性质.
采用吸附技术治理水环境中PFAS具有成本低、操作简便,对水中PFAS去除效率高的优势,已受到研究人员的广泛关注[27]. 目前大量文献报道了各种吸附剂对于PFAS的吸附去除,包括活性炭、阴离子交换树脂、碳纳米管、生物材料等,同时也研究了吸附剂对PFAS的吸附机理及其主要影响因素[22]. 近年一些研究也根据PFAS的特性开发了高选择性的吸附剂,如氟化吸附剂、环糊精聚合物等[28— 29]. 为了更好地提高应用性能,针对实际所处的水环境不同,各种实际水样中PFAS吸附去除研究也越来越受到关注[26, 30].
本文聚焦近年PFAS吸附去除的相关研究,综述不同类型的吸附剂对PFAS的吸附性能,归纳吸附PFAS的主要机理和影响因素;针对当前的研究进展,总结了目前应用吸附技术来治理PFAS所存在的挑战并做出了展望,旨在为未来新型吸附剂的开发以及水环境中PFAS的处理提供新的方向与思路.
水环境中全氟及多氟烷基化合物的吸附去除研究进展
A critical review for removal of per- and polyfluoroalkyl substances in aqueous by adsorption
-
摘要: 全氟及多氟烷基化合物(Per- and polyfluoroalkyl substances,PFAS)具有优异的物化性能,在生产和生活的各个领域广泛应用. PFAS普遍具有持久性、生物累积性和潜在生物毒性,长期应用已造成全球范围内水环境的污染. 吸附技术作为有效的PFAS处理技术具有成本低、易操作、高效等优势. 本文对近年来所报道的各种吸附剂对PFAS的吸附性能以及吸附行为进行了介绍,总结了PFAS在吸附剂上的主要吸附作用及其机理,讨论了几种影响吸附剂吸附性能的主要因素. 结合当前水环境中PFAS的吸附去除的进展,浅谈目前所存在挑战,以期为进一步开发更加高效、安全、实用的PFAS吸附去除手段提供参考.
-
关键词:
- 全氟及多氟烷基化合物(PFAS) /
- 吸附 /
- 水 /
- 吸附机理.
Abstract: Per- and polyfluoroalkyl substances (PFAS) have been widely used in various fields of industry and daily life due to their excellent physicochemical properties. Because of their general persistence, bioaccumulation and potential bio-toxicity, long-term application of PFAS has resulted in global water contamination. Adsorption technology is an effective PFAS disposal technology, with advantages of low cost, easy operation and high efficiency. In this paper, the adsorption performance and behavior of PFAS on various adsorbents reported in recent years were introduced, primary adsorption effect and underlying mechanisms were concluded, several main factors affecting the adsorption performance of adsorbents were also discussed. By summarizing current research progress, this review has brought up the existing challenges for adsorbing PFAS in aquatic environment, and provided an insight into further development of a more efficient, safe and practical PFAS-adsorbent.-
Key words:
- per- and polyfluoroalkyl substances (PFAS) /
- adsorption /
- aqueous /
- adsorption mechanism
-
表 1 常见PFAS结构及其物化性质
Table 1. Common PFAS structures and their physicochemical properties
中文名
Chinese name英文名
English name缩写
Abbreviation分子量
Mass化学结构
Chemical structurelg Kow pKa 全氟丁酸 Perfluorobutyric acid PFBA 214.04 1.43 0.4[22] 全氟己酸 Perfluorohexanoic acid PFHxA 314.05 2.85 −0.16[22] 全氟辛酸 Perfluorooctanoate acid PFOA 414.07 3.10 −0.2[22] 全氟丁基磺酸 Perfluorobutanesulfonic acid PFBS 300.09 2.79 0.14[22] 全氟己基磺酸 Perfluorohexanesulfonic acid PFHxS 400.11 2.20 0.14[22] 全氟辛基磺酸 Perfluorooctanesulfonic acid PFOS 500.13 5.61 −3.27[22] 全氟-2-全氟丙氧基丙酸 Perfluoro-2-propoxypropanoic acid GenX 331.34 1.25 2.84[23] 6:2氯代全氟烷基醚磺酸 6:2 chlorinated polyfluorinated ether sulfonate 6:2 Cl-PFAES 532.58 6.93 −5.01[24] 8:2氯代全氟烷基醚磺酸 8:2 chlorinated polyfluorinated ether sulfonate 8:2 Cl-PFAES 632.59 8.44 0.14[20] 6:2 氟调聚磺酸 6:2 Fluorotelomer sulfonic acid 6:2 FTS 428.16 3.39 −4.2[25] 8:2 氟调聚磺酸 8:2 Fluorotelomer sulfonic acid 8:2 FTS 528.18 5.22 — 8:2 氟调聚磺酰胺基 N,N-二甲基胺 8:2 Fluorotelomer sulfonamido N,N-dimethyl amine 8:2 FtSaAm 613.35 5.94 9.18[20] 6:2 氟调聚磺酰胺基甜菜碱 6:2 Fluorotelomer sulfonamide betaine 6:2 FTAB 570.37 2.22 2.26[26] lg Kow 数据来源于美国环境保护署旗下的CompTox Chemicals Dashboard:comptox.epa.gov/dashboard/ 表 2 ACs的PFAS吸附参数与结果汇总
Table 2. Summary of PFAS adsorption parameters and results on ACs in this paper
吸附剂
Adsorbent尺寸/μm
Size吸附剂剂量/
(mg·L−1)
Adsorbent
dosePFAS 初始浓度/
(μg·L−1)
Initial
concentration水样基质
Water
matrixpH 平衡时间/h Equilibrium time 吸附容量/
(mg·g−1)
Adsorption
capacity评价模式
Evaluation
mode参考文献
ReferencePAC > 74 5000 PFOS 10000 纯水 — > 1 2.897 静态 [10] BAC 600—850 200 PFOA
PFHpA
PFHxA120060
40040
31400工业洗
涤废水4 > 33.5
12.5
12.5— 静态 [11] ACs 10—1700 10—60 20种混合PFAS 0.5 地下水 7—8 — — 静态 [30] PAC <100 100 PFOS
PFOA50000 纯水 5 4 520
277静态 [33] GAC 900—1000 100 PFOS
PFOA> 168 185
161F400(烟煤GAC) 850—1000 200 PFOS
PFOA500 纯水 7 48—240
48—2402.59
2.52静态 [35] BPL(烟煤PAC) ~44 PFOS
PFOA< 2
< 22.48
2.491240C(椰壳GAC) 850—1000 PFOS
PFOA48—240
48—2402.53
2.58WVB(木质GAC) 850—1000 PFOS
PFOA48—240
48—2402.44
2.34BioNC(木质GAC) 850—1000 PFOS
PFOA48—240
48—2402.57
2.21AquaNC(木质PAC) 45—150 PFOS
PFOA< 2
< 22.48
2.46椰壳PAC — 15 C4-8 PFCA 0.5 纯水
地表水7.2 > 0.25 — 静态 [36] 烟煤PAC — PFHxA 纯水 > 0.25 — 木质PAC — PFHxA 纯水 > 0.25 — 褐煤PAC — PFHxA 纯水 > 0.25 — 椰壳S-PAC 1.2 PFHxA 纯水 < 0.25 — 烟煤S-PAC 1.2 PFHxA 纯水 < 0.25 — 木质S-PAC 1.2 PFHxA 纯水 < 0.25 — 褐煤S-PAC 1.2 PFHxA 纯水 < 0.25 — BAC 600—850 100 PFOS
PFOA100000
81000纯水 — < 24 1100
426静态 [37] GAC 250—500 10 PFOA 5 自来水 — — — 动态 [40] PAC > 150 100 GenX 50160 纯水 4 48 261 静态 [23] GAC 425—850 48 261 GAC — 500 PFOS 1000—
1000000模拟的
电镀废水— — 1434.2 静态 [41] 表 3 阴离子交换树脂的PFAS吸附参数与结果汇总
Table 3. Summary of PFAS adsorption parameters and results on anion exchange resin
吸附剂
Adsorbent尺寸/μm
Size吸附剂剂量/
(mg·L−1)
Adsorbent
dosePFAS 初始浓度/
(μg·L−1)
Initial
concentration水样基质
Water
matrixpH 平衡时间/h
Equilibrium
time吸附容量/
(mg·g−1)
Adsorption
capacity评价模式
Evaluation
mode参考文献
ReferenceIRA 67 300—1200 100 PFOA
PFHpA
PFHxA120060
40040
31400PFOSF洗涤废水 4 < 33.5
< 33.5
< 33.5— 静态 [11] PFA694E 675 10 PFBS
PFOS
PFBA
PFOA
FBSA
FOSA1 纯水、地下水 5.5
7.5
8.5— — 静态 [26] AI 400 300—1200 50 PFOS
PFOA50000 纯水 3
7168 210
1209静态 [33] IRA 67 300—1180 100 GenX 50160 纯水 4 48 1063 静态 [23] IRA 400 300—1180 48 917 AW-F 100 — 500 PFOS 103—106 模拟的
电镀废水— — 1930.9 静态 [41] AS-F 520 1988.3 AS-LK6362 314.9 IRA67 300—1180 50 PFOS 200000 纯水 3 48 2850 静态 [43] IRA96 300—1180 168 1910 IRA400 300—1180 168 265 IRA410 300—850 168 365 IRA900 300—1180 168 2100 IRA958 300—1180 48 2430 A520E — 1000 PFBS
PFOS
PFBA
PFOA1000000 纯水、饮用水 — 70—80 53.8
210.4
29.5
134.7动态
静态[44] A532E PFBS
PFOS
PFBA
PFOA50—60 109.2
260.5
52.3
142.1A600E PFBS
PFOS
PFBA
PFOA70—80 34.6
186.2
19.1
125.2IRA67 300—1180 50 PFOS
F53B189000
200000纯水 3 20
> 482221
1934静态 [45] A592 — 0.4 ml·L−1 13种混合PFAS 0.1—10 纯水、天然有机质模拟水样、河流水 7.2 0.167—0.667 — 动态
静态[46] A860 0.333—2.333 MIEX — 4 ml·L−1 8种混合PFAS 1 纯水、地下水 — 0.333 静态 [47] 表 4 生物材料的PFAS吸附参数与结果汇总
Table 4. Summary of PFAS adsorption parameters and results on biomaterials
吸附剂
Adsorbent尺寸/μm
Size吸附剂剂量/
(mg·L−1)
Adsorbent
dosePFAS 初始浓度/
(μg·L−1)
Initial
concentration水样基质
Water
matrixpH 平衡时间/h
Equilibrium
time吸附容量/
(mg·g−1)
Adsorption
capacity评价模式
Evaluation
mode参考文献
ReferenceDFB-CDP — 10 PFOA 1 纯水 7 13 33 静态 [29] MA — 5—30 PFOS 100000 纯水 7 72 811 静态 [50] 季铵化棉 — 100 PFOS
PFOA230000
190000纯水 5 12
41650
1283静态 [48] 胺化稻壳 500—800 100 PFOS
PFBA
PFOA186000
80000
154000纯水 5 9
5
31325
364
1031静态 [49] 松木生物炭 350—1000 333 PFBA
PFOA1 纯水、湖水、废水处理厂出水 7.2 24
168— 静态
动态[51] 硬木生物炭 PFBA
PFOA24
168— PEI-f-CMC 10—50 25 PFOA 1 纯水 6.5 0.25 2.32 静态 [52] 22种混合PFAS 湖水 — — 交联壳聚糖 400—5000 76 PFOS
PFHxS
PFBS186000
148800
111600纯水 3 100
35
112500 静态 [53] rGO-ZF@CB 1280 1000 PFOS
PFOA20000 纯水 3 2 21.6
16.1静态 [55] 胺化-CDP — 25 10种混合PFAS 2 纯水 7.5 — — 静态 [59] DEXSORB < 150 10 68种混合PFAS 0.009—14.75 受AFFF污染地下水 6.7 — — 静态 [60] DEXSORB+ < 63 — — 表 5 氟化吸附剂的PFAS吸附参数与结果汇总
Table 5. Summary of PFAS adsorption parameters and results on fluorinated adsorbent
吸附剂
Adsorbent尺寸/μm
Size吸附剂剂量/
(mg·L−1)
Adsorbent
dosePFAS 初始浓度/
(μg·L−1)
Initial
concentration水样基质
Water
matrixpH 平衡时间/h
Equilibrium time吸附容量/
(mg·g−1)
Adsorption
capacity评价模式
Evaluation
mode参考文献
ReferenceF-MT < 74 10 PFOS
PFOA2500
2070纯水 5 < 21 124300
80896静态 [28] 双功能化纳米金 4.7—5.3 — PFOS 20 纯水、废水 6
11< 2 — 静态 [62] F-VT < 74 50 PFBS
PFOS
PFBA
PFOA25000 纯水、AFFF废水 6 —
4
—
—262000
1127000
166000
681000静态 [63] FCH — 3600 PFOA 1
10000纯水 3.5−10.5 < 2 2.47—3.56 静态 [64] 1800 PFOS
PFNA
PFOS-NH4
PFOSAmS
PFOSNO10000 — — 2.84
2.78
2.51
2.41
2.58离子氟凝胶 75—125 10
100GenX 1
200纯水 9.7 < 0.5 278 静态 [66] 100 11种混合PFAS 1 污水厂出水 6.2 — — 表 6 本文CNTs的PFAS吸附参数与结果汇总
Table 6. Summary of PFAS adsorption parameters and results on CNTs in this paper
吸附剂
Adsorbent尺寸/μm
Size吸附剂剂量/
(mg·L−1)
Adsorbent
dosePFAS 初始浓度/
(μg·L−1)
Initial
concentration水样基质
Water
matrixpH 平衡时间/h
Equilibrium
time吸附容量/
(mg·g−1)
Adsorption
capacity评价模式
Evaluation
mode参考文献
ReferenceSWCNT 0.001—0.002 200—1200 PFOS 100000 纯水 7 2 237 静态 [50] MWCNT10 0.01—0.02 2 196 MWCNT50 > 0.05 2 149 SWCNT 0.002 250 PFBS
PFHxS
PFOS
PFBA
PFHxA
PFOA150
200
250
107
157
207纯水 7 < 15 — 静态 [68] MWCNT-100 0.056 PFOA 82.8 24 MWCNT-OH 0.061 < 15 MWCNT-COOH 0.064 < 15 M–O (3.84%) < 0.008 83 PFOS
PFOA
PFOSA50000 纯水 5 10
10
3355
132.5
683.6静态 [70] M–O (10.08%) 2—10 — — M–O (18.01%) — — M–O (22.8%) — — PASNTs 0.2 200 PFOS
PFOA250000 纯水 — < 40 1651
1100静态 [71] PABNTs — 1540
1111MWCNT(电化学辅助) — 50 PFOS
PFOA100 纯水 7 2
3470
406静态 [72] MWCNT PFOS
PFOA8 5
2.7CNTs-20%石墨烯(电化学辅助) — — PFOS
PFOA50000
41400纯水 3.6 2
4555.8
491.4静态 [73] 表 7 本文MOFs的PFAS吸附参数与结果汇总
Table 7. Summary of PFAS adsorption parameters and results on MOFs in this paper
吸附剂
Adsorbent比表面积/
(m2·g−1)
Specific
surface area吸附剂剂量/
(mg·L−1)
Adsorbent
dosePFAS 初始浓度/
(μg·L−1)
Initial
concentration水样基质
Water
matrixpH 平衡时间/h
Equilibrium
time吸附容量/
(mg·g−1)
Adsorption
capacity评价模式
Evaluation
mode参考文献
ReferenceMIL-101(Cr) 2560 100 PFOA 100000 纯水 5 < 1 480.2 静态 [76] MIL-101(Cr)NH2 1195 372.6 MIL-101(Cr)NMe3 445 500.9 MIL-101(Cr)DMEN 1692 597.4 MIL-101(Cr)QDMEN 1530 790.7 Fe-BTC 1051 1000 PFOA 500000 纯水 3.3 > 1 548.2 静态 [77] MIL-100-Fe 1237 426.6 MIL-101-Fe 1811 490.1 UiO-66-10 1423 500 PFBS
PFOS500000 纯水 5 < 1
< 1522
620静态 [79] UiO-66-25 1404 125—3000 PFBS
PFOS< 1
< 1—
410UiO—66-50 687 PFOS — 95 UiO-66-DF 1121 PFOS — — ZIF-7 14 200 PFOA 4140—207000 纯水 5 — 22 静态 [81] ZIF-8 1291 — 177 ZIF-L 12 — 244 UiO-66 — 1000 PFOS
PFOA500000 纯水 4 1 160
388静态 [82] UiO-66-(F4) 682 PFOS
PFOA1 254
467UiO-66 — 1000 PFOS
PFOA500000 纯水 4 > 1 160
388静态 [83] UiO-67 — PFOS
PFOA> 1 580
700MIL-96-RHPAM2 75 1000 PFOA 1000000 纯水 — 186 340 静态 [84] 表 8 其他相关吸附剂的PFAS吸附参数与结果汇总
Table 8. Summary of PFAS adsorption parameters and results on other relevant adsorbents
吸附剂
Adsorbent尺寸/μm
Size吸附剂剂量/
(mg·L−1)
Adsorbent
dosePFAS 初始浓度/
(μg·L−1)
Initial
concentration水样基质
Water
matrixpH 平衡时间/h
Equilibrium time吸附容量/
(mg·g−1)
Adsorption
capacity评价模式
Evaluation
mode参考文献
Reference介孔Fe3O4@SiO2@CTAB–SiO2 0.3—0.4 50—500 PFOS 0.5 纯水 3 0.167 — 静态 [85] 淀粉固定的磁性纳米颗粒 0.295 8 PFOA 0.2 纯水 6.8 0.5 62.52 静态 [86] MNP@GC5A-12C 0.213 — PFOS
PFOA1 纯水 7.4 — — 静态 [87] 二元功能单体-MIPs — 666.67 PFOS
PFOA1000 纯水 — < 24 6.27
6.42静态 [88] — PFHxS
PFOS
PFHxS
PFOA1000 湖水 — — 0.530
1.108
0.166
1.225MIP-CMSs 0.73 250 PFOS 50000 纯水 3 1 75.99 静态 [89] 聚(3-丙烯酰胺丙基)三甲基氯化铵水凝胶 — 70 16种混合PFAS 1 纯水、地表水、污水处理厂出水、处理过的废水 6.5 < 2 — 静态 [90] -
[1] BUCK R C, FRANKLIN J, BERGER U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins [J]. Integrated Environmental Assessment and Management, 2011, 7(4): 513-541. doi: 10.1002/ieam.258 [2] KISSA E. Fluorinated surfactants and repellents [J]. Textile Research Journal, 2001, 71(8): 750c. doi: 10.1177/004051750107100823 [3] FUJII S, POLPRASERT C, TANAKA S, et al. New POPs in the water environment: Distribution, bioaccumulation and treatment of perfluorinated compounds–a review paper [J]. Journal of Water Supply:Research and Technology-Aqua, 2007, 56(5): 313-326. doi: 10.2166/aqua.2007.005 [4] RENNER R. Growing concern over perfluorinated chemicals [J]. Environmental Science & Technology, 2001, 35(7): 154A-160A. [5] KWOK K Y, TANIYASU S, YEUNG L W Y, et al. Flux of perfluorinated chemicals through wet deposition in Japan, the United States, and several other countries [J]. Environmental Science & Technology, 2010, 44(18): 7043-7049. [6] XIAO F, HALBACH T R, SIMCIK M F, et al. Input characterization of perfluoroalkyl substances in wastewater treatment plants: Source discrimination by exploratory data analysis [J]. Water Research, 2012, 46(9): 3101-3109. doi: 10.1016/j.watres.2012.03.027 [7] CUI Q Q, PAN Y T, ZHANG H X, et al. Elevated concentrations of perfluorohexanesulfonate and other per- and polyfluoroalkyl substances in Baiyangdian Lake (China): Source characterization and exposure assessment [J]. Environmental Pollution, 2018, 241: 684-691. doi: 10.1016/j.envpol.2018.05.099 [8] ARVANITI O S, STASINAKIS A S. Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment [J]. Science of the Total Environment, 2015, 524/525: 81-92. doi: 10.1016/j.scitotenv.2015.04.023 [9] ATEIA M, ALSBAIEE A, KARANFIL T, et al. Efficient PFAS removal by amine-functionalized sorbents: Critical review of the current literature [J]. Environmental Science & Technology Letters, 2019, 6(12): 688-695. [10] QIAN J, SHEN M M, WANG P F, et al. Perfluorooctane sulfonate adsorption on powder activated carbon: Effect of phosphate (P) competition, pH, and temperature [J]. Chemosphere, 2017, 182: 215-222. doi: 10.1016/j.chemosphere.2017.05.033 [11] DU Z W, DENG S B, CHEN Y G, et al. Removal of perfluorinated carboxylates from washing wastewater of perfluorooctanesulfonyl fluoride using activated carbons and resins [J]. Journal of Hazardous Materials, 2015, 286: 136-143. doi: 10.1016/j.jhazmat.2014.12.037 [12] SPAAN K M, van NOORDENBURG C, PLASSMANN M M, et al. Fluorine mass balance and suspect screening in marine mammals from the Northern Hemisphere [J]. Environmental Science & Technology, 2020, 54(7): 4046-4058. [13] UNEP. Fourth meeting of the conference of the parties to the Stockholm Convention[EB/OL]. [2022-03-02]. www. pops. int/TheConvention/ConferenceoftheParties/Meetings/COP4/tabid/404/mctl/ViewDetails/EventModID/870/EventID/23/xmid/1673/Default. aspx. [14] UNEP. Ninth meeting of the conference of the parties to the Stockholm Convention[EB/OL]. [2022-03-02]. www. pops. int/TheConvention/ConferenceoftheParties/Meetings/COP9/tabid/7521/Default. aspx. [15] LIU Y N, PEREIRA A, MARTIN J W. Discovery of C5-C17 poly- and perfluoroalkyl substances in water by in-line SPE-HPLC-Orbitrap with in-source fragmentation flagging [J]. Analytical Chemistry, 2015, 87(8): 4260-4268. doi: 10.1021/acs.analchem.5b00039 [16] USEPA. Drinking Water Health Advisories for PFOA and PFOS [EB/OL]. [2022-03-02]. www. epa. gov/sites/default/files/2016-06/documents/drinkingwaterhealthadvisories_pfoa_pfos_updated_5.31. 16. pdf. [17] GUELFO J L, ADAMSON D T. Evaluation of a national data set for insights into sources, composition, and concentrations of per- and polyfluoroalkyl substances (PFASs) in US drinking water [J]. Environmental Pollution, 2018, 236: 505-513. doi: 10.1016/j.envpol.2018.01.066 [18] 优先控制化学品名录(第一批)[EB/OL]. [2022-03-02]. www. mee. gov. cn/gkml/hbb/bgg/201712/t20171229_428832. htm. [19] 优先控制化学品名录(第二批)[EB/OL]. [2022-03-02]. www. mee. gov. cn/xxgk2018/xxgk/xxgk01/202011/t20201102_805937. html. [20] XIAO F. Emerging poly- and perfluoroalkyl substances in the aquatic environment: A review of current literature [J]. Water Research, 2017, 124: 482-495. doi: 10.1016/j.watres.2017.07.024 [21] ATEIA M, MAROLI A, THARAYIL N, et al. The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review [J]. Chemosphere, 2019, 220: 866-882. doi: 10.1016/j.chemosphere.2018.12.186 [22] DU Z W, DENG S B, BEI Y, et al. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—A review [J]. Journal of Hazardous Materials, 2014, 274: 443-454. doi: 10.1016/j.jhazmat.2014.04.038 [23] WANG W, MAIMAITI A, SHI H L, et al. Adsorption behavior and mechanism of emerging perfluoro-2-propoxypropanoic acid (GenX) on activated carbons and resins [J]. Chemical Engineering Journal, 2019, 364: 132-138. doi: 10.1016/j.cej.2019.01.153 [24] WANG S W, HUANG J, YANG Y, et al. First report of a Chinese PFOS alternative overlooked for 30 years: Its toxicity, persistence, and presence in the environment [J]. Environmental Science & Technology, 2013, 47(18): 10163-10170. [25] ZHANG Y Y, LIU J X, MOORES A, et al. Transformation of 6: 2 fluorotelomer sulfonate by cobalt(II)-activated peroxymonosulfate [J]. Environmental Science & Technology, 2020, 54(7): 4631-4640. [26] CHING C, KLEMES M J, TRANG B, et al. β-cyclodextrin polymers with different cross-linkers and ion-exchange resins exhibit variable adsorption of anionic, zwitterionic, and nonionic PFASs [J]. Environmental Science & Technology, 2020, 54(19): 12693-12702. [27] ZHANG D Q, ZHANG W L, LIANG Y N. Adsorption of perfluoroalkyl and polyfluoroalkyl substances (PFASs) from aqueous solution - A review [J]. Science of the Total Environment, 2019, 694: 133606. doi: 10.1016/j.scitotenv.2019.133606 [28] DU Z W, DENG S B, ZHANG S Y, et al. Selective and high sorption of perfluorooctanesulfonate and perfluorooctanoate by fluorinated alkyl chain modified montmorillonite [J]. The Journal of Physical Chemistry C, 2016, 120(30): 16782-16790. doi: 10.1021/acs.jpcc.6b04757 [29] XIAO L L, LING Y H, ALSBAIEE A, et al. β-cyclodextrin polymer network sequesters perfluorooctanoic acid at environmentally relevant concentrations [J]. Journal of the American Chemical Society, 2017, 139(23): 7689-7692. doi: 10.1021/jacs.7b02381 [30] WU C Y, KLEMES M J, TRANG B, et al. Exploring the factors that influence the adsorption of anionic PFAS on conventional and emerging adsorbents in aquatic matrices [J]. Water Research, 2020, 182: 115950. doi: 10.1016/j.watres.2020.115950 [31] AHMED M J. Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review [J]. Environmental Toxicology and Pharmacology, 2017, 50: 1-10. doi: 10.1016/j.etap.2017.01.004 [32] JEGUIRIM M, BELHACHEMI M, LIMOUSY L, et al. Adsorption/reduction of nitrogen dioxide on activated carbons: Textural properties versus surface chemistry - A review [J]. Chemical Engineering Journal, 2018, 347: 493-504. doi: 10.1016/j.cej.2018.04.063 [33] YU Q, ZHANG R Q, DENG S B, et al. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study [J]. Water Research, 2009, 43(4): 1150-1158. doi: 10.1016/j.watres.2008.12.001 [34] WANG W, DENG S B, LI D Y, et al. Sorption behavior and mechanism of organophosphate flame retardants on activated carbons [J]. Chemical Engineering Journal, 2018, 332: 286-292. doi: 10.1016/j.cej.2017.09.085 [35] ZHI Y, LIU J X. Adsorption of perfluoroalkyl acids by carbonaceous adsorbents: Effect of carbon surface chemistry [J]. Environmental Pollution, 2015, 202: 168-176. doi: 10.1016/j.envpol.2015.03.019 [36] 孙博, 马军. 水中全氟化合物的活性炭吸附特性研究 [J]. 给水排水, 2017, 53(2): 14-18. doi: 10.3969/j.issn.1002-8471.2017.02.003 SUN B, MA J. Study on adsorption characteristics of perfluorinated compounds on activated carbon [J]. Water & Wastewater Engineering, 2017, 53(2): 14-18(in Chinese). doi: 10.3969/j.issn.1002-8471.2017.02.003
[37] DENG S B, NIE Y, DU Z W, et al. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon [J]. Journal of Hazardous Materials, 2015, 282: 150-157. doi: 10.1016/j.jhazmat.2014.03.045 [38] RAHMAN M F, PELDSZUS S, ANDERSON W B. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review [J]. Water Research, 2014, 50: 318-340. [39] MDH. Public Health Assessment: Perfluorochemical Contamination in Lake Elmo and Oakdale, Washington County, Minnesota[EB/OL]. [2022-03-02]. www. health. state. mn. us/communities/environment/hazardous/docs/sites/washington/ phaelmooakdale. pdf [40] CHULARUEANGAKSORN P, TANAKA S, FUJII S, et al. Adsorption of perfluorooctanoic acid (PFOA) onto anion exchange resin, non-ion exchange resin, and granular-activated carbon by batch and column [J]. Desalination and Water Treatment, 2014, 52(34/35/36): 6542-6548. [41] SCHURICHT F, BOROVINSKAYA E S, RESCHETILOWSKI W. Removal of perfluorinated surfactants from wastewater by adsorption and ion exchange—Influence of material properties, sorption mechanism and modeling [J]. Journal of Environmental Sciences, 2017, 54: 160-170. doi: 10.1016/j.jes.2016.06.011 [42] DIXIT F, DUTTA R, BARBEAU B, et al. PFAS removal by ion exchange resins: A review [J]. Chemosphere, 2021, 272: 129777. doi: 10.1016/j.chemosphere.2021.129777 [43] DENG S B, YU Q, HUANG J, et al. Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: Effects of resin properties and solution chemistry [J]. Water Research, 2010, 44(18): 5188-5195. doi: 10.1016/j.watres.2010.06.038 [44] ZAGGIA A, CONTE L, FALLETTI L, et al. Use of strong anion exchange resins for the removal of perfluoroalkylated substances from contaminated drinking water in batch and continuous pilot plants [J]. Water Research, 2016, 91: 137-146. doi: 10.1016/j.watres.2015.12.039 [45] GAO Y X, DENG S B, DU Z W, et al. Adsorptive removal of emerging polyfluoroalky substances F-53B and PFOS by anion-exchange resin: A comparative study [J]. Journal of Hazardous Materials, 2017, 323: 550-557. doi: 10.1016/j.jhazmat.2016.04.069 [46] DIXIT F, BARBEAU B, MOSTAFAVI S G, et al. PFAS and DOM removal using an organic scavenger and PFAS-specific resin: Trade-off between regeneration and faster kinetics [J]. Science of the Total Environment, 2021, 754: 142107. doi: 10.1016/j.scitotenv.2020.142107 [47] PARK M, DANIELS K D, WU S M, et al. Magnetic ion-exchange (MIEX) resin for perfluorinated alkylsubstance (PFAS) removal in groundwater: Roles of atomic charges for adsorption [J]. Water Research, 2020, 181: 115897. doi: 10.1016/j.watres.2020.115897 [48] DENG S B, ZHENG Y Q, XU F J, et al. Highly efficient sorption of perfluorooctane sulfonate and perfluorooctanoate on a quaternized cotton prepared by atom transfer radical polymerization [J]. Chemical Engineering Journal, 2012, 193/194: 154-160. doi: 10.1016/j.cej.2012.04.005 [49] DENG S B, NIU L, BEI Y, et al. Adsorption of perfluorinated compounds on aminated rice husk prepared by atom transfer radical polymerization [J]. Chemosphere, 2013, 91(2): 124-130. doi: 10.1016/j.chemosphere.2012.11.015 [50] CHEN X, XIA X H, WANG X L, et al. A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes [J]. Chemosphere, 2011, 83(10): 1313-1319. doi: 10.1016/j.chemosphere.2011.04.018 [51] INYANG M, DICKENSON E R V. The use of carbon adsorbents for the removal of perfluoroalkyl acids from potable reuse systems [J]. Chemosphere, 2017, 184: 168-175. doi: 10.1016/j.chemosphere.2017.05.161 [52] ATEIA M, ATTIA M F, MAROLI A, et al. Rapid removal of poly- and perfluorinated alkyl substances by poly(ethylenimine)-functionalized cellulose microcrystals at environmentally relevant conditions [J]. Environmental Science & Technology Letters, 2018, 5(12): 764-769. [53] ZHANG Q Y, DENG S B, YU G, et al. Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: Sorption kinetics and uptake mechanism [J]. Bioresource Technology, 2011, 102(3): 2265-2271. doi: 10.1016/j.biortech.2010.10.040 [54] LIU M Y, XIE Z F, YE H, et al. Magnetic cross-linked chitosan for efficient removing anionic and cationic dyes from aqueous solution [J]. International Journal of Biological Macromolecules, 2021, 193: 337-346. doi: 10.1016/j.ijbiomac.2021.10.121 [55] ELANCHEZHIYAN S S, PREETHI J, RATHINAM K, et al. Synthesis of magnetic chitosan biopolymeric spheres and their adsorption performances for PFOA and PFOS from aqueous environment [J]. Carbohydrate Polymers, 2021, 267: 118165. doi: 10.1016/j.carbpol.2021.118165 [56] MORIN-CRINI N, CRINI G. Environmental applications of water-insoluble β-cyclodextrin-epichlorohydrin polymers [J]. Progress in Polymer Science, 2013, 38(2): 344-368. doi: 10.1016/j.progpolymsci.2012.06.005 [57] ALSBAIEE A, SMITH B J, XIAO L L, et al. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer [J]. Nature, 2016, 529(7585): 190-194. doi: 10.1038/nature16185 [58] XIAO L L, CHING C, LING Y H, et al. Cross-linker chemistry determines the uptake potential of perfluorinated alkyl substances by β-cyclodextrin polymers [J]. Macromolecules, 2019, 52(10): 3747-3752. doi: 10.1021/acs.macromol.9b00417 [59] KLEMES M J, LING Y H, CHING C, et al. Reduction of a tetrafluoroterephthalonitrile-β-cyclodextrin polymer to remove anionic micropollutants and perfluorinated alkyl substances from water [J]. Angewandte Chemie International Edition, 2019, 58(35): 12049-12053. doi: 10.1002/anie.201905142 [60] WANG R, CHING C, DICHTEL W R, et al. Evaluating the removal of per- and polyfluoroalkyl substances from contaminated groundwater with different adsorbents using a suspect screening approach [J]. Environmental Science & Technology Letters, 2020, 7(12): 954-960. [61] NIU H Y, WANG S H, ZHOU Z, et al. Sensitive colorimetric visualization of perfluorinated compounds using poly(ethylene glycol) and perfluorinated thiols modified gold nanoparticles [J]. Analytical Chemistry, 2014, 86(9): 4170-4177. doi: 10.1021/ac403406d [62] LIU Y, SU G X, WANG F, et al. Elucidation of the molecular determinants for optimal perfluorooctanesulfonate adsorption using a combinatorial nanoparticle library approach [J]. Environmental Science & Technology, 2017, 51(12): 7120-7127. [63] DU Z W, DENG S B, ZHANG S Y, et al. Selective and fast adsorption of perfluorooctanesulfonate from wastewater by magnetic fluorinated vermiculite [J]. Environmental Science & Technology, 2017, 51(14): 8027-8035. [64] QUAN Q Z, WEN H J, HAN S T, et al. Fluorous-core nanoparticle-embedded hydrogel synthesized via tandem photo-controlled radical polymerization: Facilitating the separation of perfluorinated alkyl substances from water [J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24319-24327. [65] VERDUZCO R, WONG M S. Fighting pfas with pfas [J]. ACS Central Science, 2020, 6(4): 453-455. doi: 10.1021/acscentsci.0c00164 [66] KUMARASAMY E, MANNING I M, COLLINS L B, et al. Ionic fluorogels for remediation of per- and polyfluorinated alkyl substances from water [J]. ACS Central Science, 2020, 6(4): 487-492. doi: 10.1021/acscentsci.9b01224 [67] YANG K, XING B S. Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application [J]. Chemical Reviews, 2010, 110(10): 5989-6008. doi: 10.1021/cr100059s [68] DENG S B, ZHANG Q Y, NIE Y, et al. Sorption mechanisms of perfluorinated compounds on carbon nanotubes [J]. Environmental Pollution, 2012, 168: 138-144. doi: 10.1016/j.envpol.2012.03.048 [69] DATSYUK V, KALYVA M, PAPAGELIS K, et al. Chemical oxidation of multiwalled carbon nanotubes [J]. Carbon, 2008, 46(6): 833-840. doi: 10.1016/j.carbon.2008.02.012 [70] LI X N, ZHAO H M, QUAN X, et al. Adsorption of ionizable organic contaminants on multi-walled carbon nanotubes with different oxygen contents [J]. Journal of Hazardous Materials, 2011, 186(1): 407-415. doi: 10.1016/j.jhazmat.2010.11.012 [71] XU C M, CHEN H, JIANG F. Adsorption of perflourooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) on polyaniline nanotubes [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 479: 60-67. [72] LI X N, CHEN S, QUAN X, et al. Enhanced adsorption of PFOA and PFOS on multiwalled carbon nanotubes under electrochemical assistance [J]. Environmental Science & Technology, 2011, 45(19): 8498-8505. [73] NIU Z J, WANG Y J, LIN H, et al. Electrochemically enhanced removal of perfluorinated compounds (PFCs) from aqueous solution by CNTs-graphene composite electrode [J]. Chemical Engineering Journal, 2017, 328: 228-235. doi: 10.1016/j.cej.2017.07.033 [74] FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks [J]. Science, 2013, 341(6149): 1230444. doi: 10.1126/science.1230444 [75] KHAN N A, HASAN Z, JHUNG S H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review [J]. Journal of Hazardous Materials, 2013, 244/245: 444-456. doi: 10.1016/j.jhazmat.2012.11.011 [76] LIU K, ZHANG S Y, HU X Y, et al. Understanding the adsorption of PFOA on MIL-101(Cr)-based anionic-exchange metal-organic frameworks: Comparing DFT calculations with aqueous sorption experiments [J]. Environmental Science & Technology, 2015, 49(14): 8657-8665. [77] YANG Y Q, ZHENG Z H, JI W Q, et al. Insights to perfluorooctanoic acid adsorption micro-mechanism over Fe-based metal organic frameworks: Combining computational calculation with response surface methodology [J]. Journal of Hazardous Materials, 2020, 395: 122686. doi: 10.1016/j.jhazmat.2020.122686 [78] HONG D Y, HWANG Y K, SERRE C, et al. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis [J]. Advanced Functional Materials, 2009, 19(10): 1537-1552. doi: 10.1002/adfm.200801130 [79] CLARK C A, HECK K N, POWELL C D, et al. Highly defective UiO-66 materials for the adsorptive removal of perfluorooctanesulfonate [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6619-6628. [80] BARPAGA D, ZHENG J, HAN K S, et al. Probing the sorption of perfluorooctanesulfonate using mesoporous metal-organic frameworks from aqueous solutions [J]. Inorganic Chemistry, 2019, 58(13): 8339-8346. doi: 10.1021/acs.inorgchem.9b00380 [81] CHEN M J, YANG A C, WANG N H, et al. Influence of crystal topology and interior surface functionality of metal-organic frameworks on PFOA sorption performance [J]. Microporous and Mesoporous Materials, 2016, 236: 202-210. doi: 10.1016/j.micromeso.2016.08.046 [82] SINI K, BOURGEOIS D, IDOUHAR M, et al. Metal-organic framework sorbents for the removal of perfluorinated compounds in an aqueous environment [J]. New Journal of Chemistry, 2018, 42(22): 17889-17894. doi: 10.1039/C8NJ03312A [83] SINI K, BOURGEOIS D, IDOUHAR M, et al. Metal-organic frameworks cavity size effect on the extraction of organic pollutants [J]. Materials Letters, 2019, 250: 92-95. doi: 10.1016/j.matlet.2019.04.113 [84] MOHD AZMI L H, WILLIAMS D R, LADEWIG B P. Polymer-assisted modification of metal-organic framework MIL-96 (Al): Influence of HPAM concentration on particle size, crystal morphology and removal of harmful environmental pollutant PFOA [J]. Chemosphere, 2021, 262: 128072. doi: 10.1016/j.chemosphere.2020.128072 [85] LI K X, ZENG Z X, XIONG J J, et al. Fabrication of mesoporous Fe3O4@SiO2@CTAB-SiO2 magnetic microspheres with a core/shell structure and their efficient adsorption performance for the removal of trace PFOS from water [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 465: 113-123. [86] GONG Y Y, WANG L, LIU J C, et al. Removal of aqueous perfluorooctanoic acid (PFOA) using starch-stabilized magnetite nanoparticles [J]. Science of the Total Environment, 2016, 562: 191-200. doi: 10.1016/j.scitotenv.2016.03.100 [87] ZHENG Z, YU H J, GENG W C, et al. Guanidinocalix[5]Arene for sensitive fluorescence detection and magnetic removal of perfluorinated pollutants [J]. Nature Communications, 2019, 10: 5762. doi: 10.1038/s41467-019-13775-1 [88] CAO F M, WANG L, TIAN Y, et al. Synthesis and evaluation of molecularly imprinted polymers with binary functional monomers for the selective removal of perfluorooctanesulfonic acid and perfluorooctanoic acid [J]. Journal of Chromatography A, 2017, 1516: 42-53. doi: 10.1016/j.chroma.2017.08.023 [89] GUO H Q, LIU Y, MA W T, et al. Surface molecular imprinting on carbon microspheres for fast and selective adsorption of perfluorooctane sulfonate [J]. Journal of Hazardous Materials, 2018, 348: 29-38. doi: 10.1016/j.jhazmat.2018.01.018 [90] ATEIA M, ARIFUZZAMAN M, PELLIZZERI S, et al. Cationic polymer for selective removal of GenX and short-chain PFAS from surface waters and wastewaters at ng/L levels [J]. Water Research, 2019, 163: 114874. doi: 10.1016/j.watres.2019.114874 [91] PAULETTO P S, BANDOSZ T J. Activated carbon versus metal-organic frameworks: A review of their PFAS adsorption performance [J]. Journal of Hazardous Materials, 2022, 425: 127810. doi: 10.1016/j.jhazmat.2021.127810 [92] INYANG M, DICKENSON E. The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review [J]. Chemosphere, 2015, 134: 232-240. doi: 10.1016/j.chemosphere.2015.03.072 [93] PARK M, WU S M, LOPEZ I J, et al. Adsorption of perfluoroalkyl substances (PFAS) in groundwater by granular activated carbons: Roles of hydrophobicity of PFAS and carbon characteristics [J]. Water Research, 2020, 170: 115364. doi: 10.1016/j.watres.2019.115364 [94] MEYER E E, ROSENBERG K J, ISRAELACHVILI J. Recent progress in understanding hydrophobic interactions [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(43): 15739-15746. doi: 10.1073/pnas.0606422103 [95] CHANDLER D. Interfaces and the driving force of hydrophobic assembly [J]. Nature, 2005, 437(7059): 640-647. doi: 10.1038/nature04162 [96] MENG P P, DENG S B, LU X Y, et al. Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents [J]. Environmental Science & Technology, 2014, 48(23): 13785-13792. [97] JIANG X Z, WANG W, YU G, et al. Contribution of nanobubbles for PFAS adsorption on graphene and OH- and NH 2-functionalized graphene: Comparing simulations with experimental results [J]. Environmental Science & Technology, 2021, 55(19): 13254-13263. [98] VINCENT J M. Noncovalent associations in fluorous fluids [J]. Journal of Fluorine Chemistry, 2008, 129(10): 903-909. doi: 10.1016/j.jfluchem.2008.06.012 [99] DALEY A B, XU Z P, OLESCHUK R D. Fluorous monolith specificity: The effects of polymer density and secondary interactions on column performance and amenability to biological samples [J]. Analytical Chemistry, 2011, 83(5): 1688-1695. doi: 10.1021/ac102827t [100] WANG J L, GUO X. Adsorption kinetic models: Physical meanings, applications, and solving methods [J]. Journal of Hazardous Materials, 2020, 390: 122156. doi: 10.1016/j.jhazmat.2020.122156 [101] GUO L Y, LU H Q, RACKEMANN D, et al. Quaternary ammonium-functionalized magnetic chitosan microspheres as an effective green adsorbent to remove high-molecular-weight invert sugar alkaline degradation products (HISADPs) [J]. Chemical Engineering Journal, 2021, 416: 129084. doi: 10.1016/j.cej.2021.129084 [102] GAGLIANO E, SGROI M, FALCIGLIA P P, et al. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration [J]. Water Research, 2020, 171: 115381. doi: 10.1016/j.watres.2019.115381 [103] YU J, LV L, LAN P, et al. Effect of effluent organic matter on the adsorption of perfluorinated compounds onto activated carbon [J]. Journal of Hazardous Materials, 2012, 225/226: 99-106. doi: 10.1016/j.jhazmat.2012.04.073 [104] FAIREY J L, SPEITEL G E Jr, KATZ L E. Impact of natural organic matter on monochloramine reduction by granular activated carbon: The role of porosity and electrostatic surface properties [J]. Environmental Science & Technology, 2006, 40(13): 4268-4273. [105] WANG F, SHIH K, LECKIE J O. Effect of humic acid on the sorption of perfluorooctane sulfonate (PFOS) and perfluorobutane sulfonate (PFBS) on boehmite [J]. Chemosphere, 2015, 118: 213-218. doi: 10.1016/j.chemosphere.2014.08.080 [106] YU Q, DENG S B, YU G. Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents [J]. Water Research, 2008, 42(12): 3089-3097. doi: 10.1016/j.watres.2008.02.024 [107] CHEN H, ZHANG C, YU Y X, et al. Sorption of perfluorooctane sulfonate (PFOS) on marine sediments [J]. Marine Pollution Bulletin, 2012, 64(5): 902-906. doi: 10.1016/j.marpolbul.2012.03.012 [108] ZHOU Z, LIANG Y, SHI Y L, et al. Occurrence and transport of perfluoroalkyl acids (PFAAs), including short-chain PFAAs in Tangxun Lake, China [J]. Environmental Science & Technology, 2013, 47(16): 9249-9257. [109] JOERSS H, SCHRAMM T R, SUN L T, et al. Per- and polyfluoroalkyl substances in Chinese and German River water - Point source- and country-specific fingerprints including unknown precursors [J]. Environmental Pollution, 2020, 267: 115567. doi: 10.1016/j.envpol.2020.115567 [110] BLUM A, BALAN S A, SCHERINGER M, et al. The Madrid statement on poly- and perfluoroalkyl substances (PFASs) [J]. Environmental Health Perspectives, 2015, 123(5): A107-A111. [111] HOUTZ E F, HIGGINS C P, FIELD J A, et al. Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil [J]. Environmental Science & Technology, 2013, 47(15): 8187-8195.