-
大气降尘在地表物质交换过程中发挥着重要的媒介作用,同时也是多种污染物的载体和反应床,其中重金属所造成的污染尤为显著[1-2]. 重金属以松散束缚的形式附着在降尘颗粒物表面[3],通过重力或降水进入地表环境中,不仅可以在食物链中传递和累积,还可以通过呼吸、皮肤接触等方式进入人体,对生态环境和人体健康造成严重危害[4-5].
近年来,城市工业、建筑业等快速发展造成的降尘重金属污染引起了国内外学者的广泛关注,故明确重金属污染特征及来源,开展生态及健康风险评价等研究对于城市大气环境防治具有重要意义. 国内外诸多学者研究降尘重金属含量发现,工业及交通污染源使得降尘中重金属Pb、Cd、As、Zn等含量显著增高,均超过了当地的土壤背景值[6-8]. 近几年在重金属污染源解析方面,正定矩阵因子分析模型(PMF)由于具有定性识别污染源并定量解析源贡献率的特点而被广泛应用[6, 9-10],如Chen等[9]利用PMF模型对宜兴蠡河流域降尘重金属进行源解析发现Zn主要来自交通排放,Cr主要来自自然源. 此外,国内外大量研究中采用内梅罗、地累积以及富集因子等多种研究方法进行降尘重金属污染水平评估[7, 11],并采用健康风险评价模型进一步评估其对人体健康的影响,如栾慧君等[12]研究发现,徐州北郊降尘中As对儿童存在一定非致癌和致癌风险;Weerasundara等[7]研究斯里兰卡降尘重金属的健康风险发现,儿童比成人面临更高的健康风险. 然而目前我国对降尘重金属的各项研究主要集中在上海、北京、南京和兰州等大型人口密集城市的主城区[3, 13-14]、城市公园和街道[15-16]及单一污染源周边[17]. 对于具有复杂铅锌冶炼等行业的重工业城市而言,探究更多的是冶炼厂周边土壤重金属污染[18-19],关于其降尘中重金属的污染评价和风险研究仍鲜有报道.
本研究区是河南省某典型铅锌冶炼城市,既有以冶炼和化工为主的重工业集群区,又有人口居住较集中、交通频繁的居民混合区以及以丘陵和山区为主的城郊区[20],故具有区域划分明显、重金属污染来源更多且更复杂的特征. 该研究以全市不同功能区大气降尘为研究对象,分析2021年逐月降尘重金属含量及污染特征,明确区域内降尘重金属污染来源并进行健康风险评估,以期为改善该市及全国铅锌冶炼城市大气重金属污染状况、保护居民身体健康提供科学支撑和借鉴依据.
某典型铅锌冶炼城市降尘重金属污染特征及健康风险评价
Pollution characteristics and health risk assessment of heavy metals in atmospheric deposition in a typical lead-zinc smelting city
-
摘要: 为探究典型铅锌冶炼城市大气降尘重金属的污染特征和健康风险,于2021年逐月采集河南省某市不同功能区共22个点位511份有效降尘样品,测定了样品中重金属含量,通过地累积指数法和生态风险评价评估了重金属污染水平,结合富集因子法、相关性分析和正定矩阵因子分析法(PMF)明确了重金属污染来源,并利用健康风险评价模型评估了重金属暴露健康风险. 结果表明,全市降尘中As、Cd、Pb、Mn、Cu、Ni、Cr和Zn的平均含量均高于河南省土壤背景值,其中As、Cd、Pb、Cu和Zn的变异系数大,在各功能区分布不均匀. 地累积指数法结果显示As、Cd、Pb、Cu和Zn污染程度较高,均为偏重度污染及以上;潜在生态风险评价结果表明As和Cd存在中度生态危害风险. 富集因子分析结果为Cd(7.71)>As(6.62)>Cu(4.08)>Zn(2.19)>Pb(2.10)>Mn(1.12)>Ni(0.99)>Cr(0.94),表明除Mn、Ni和Cr外均受不同程度人为污染,并综合相关性分析和PMF模型定量解析出冶金工业源(44.0%)、交通污染源(25.3%)、燃煤及焚烧源(14.8%)、自然源(8.2%)和二次扬尘源(7.7%)这5种重金属来源. 健康风险评价表明非致癌风险最主要暴露途径是手-口摄食,对儿童非致癌风险远高于成年男性和女性,各功能区降尘重金属经呼吸途径总致癌风险值均低于10−6,不具有致癌风险.Abstract: To explore the characteristics and health risks of heavy metals in atmospheric deposition in a typical lead-zinc smelting city, 511 effective atmospheric deposition samples from 22 sites in different functional areas of a city in Henan Province were collected monthly in 2021. Geo-accumulation index and potential ecological risk assessment methods were used to assess the heavy metal pollution level by determining the concentration of collected samples. Subsequently the sources of heavy metal pollution were specified by the combination of enrichment factor method, correlation analysis and positive matrix factor analysis (PMF). Additionally, the evaluation of exposure to heavy metals and health risks were built through health risk assessment model. Results showed that the average concentrations of As, Cd, Pb, Mn, Cu, Ni, Cr and Zn in atmospheric deposition samples were higher than the soil background values of Henan Province. Among them, the distribution of As, Cd, Pb, Cu and Zn was uneven due to their high variation coefficients. Besides, the result of Geo-accumulation index showed that these areas were highly polluted by As, Cd, Pb, Cu and Zn, which indicated that these elements belonged to heavy or heavier pollution level. However, the potential ecological risk assessment results indicated that the potential risk of As and Cd was moderate. The enrichment factor of each heavy metal followed the order of Cd(7.71) > As(6.62) > Cu(4.08) > Zn(2.19) > Pb(2.10) > Mn(1.12) > Ni(0.99) > Cr(0.94), which indicated that all heavy metals were affected by artificial behaviors except for Mn, Ni and Cr. Based on the correlation analysis and PMF model, it could be identified that the pollution came from metallurgical industry source(44.0%), traffic pollution source(25.3%), incineration and coal combustion source(14.8%), natural source(8.2%) and secondary dust source(7.7%), respectively. The health risk assessment indicated that the main exposure route of non-carcinogenic risk was hand-mouth intake, and the non-carcinogenic risks for children were higher than those for adult female and male. The total carcinogenic risk values of heavy metals through respiratory were lower than 10−6, indicating that there was no carcinogenic risk.
-
Key words:
- atmospheric deposition /
- heavy metal /
- pollution characteristics /
- source analysis /
- health risk /
- lead-zinc smelting.
-
表 1 地累积指数法的污染分级表
Table 1. Classification criteria of Geo-accumulation Index
等级
Classes地累积指数(Igeo)
Geo-accumulation index污染程度
Pollution degree0 Igeo≤0 无污染 1 0<Igeo≤1 轻度污染 2 1<Igeo≤2 偏中度污染 3 2<Igeo≤3 中度污染 4 3<Igeo≤4 偏重度污染 5 4<Igeo≤5 重度污染 6 5<Igeo 极度污染 表 2 潜在生态风险评价分级
Table 2. Classification of potential ecological risk assessment
${E}_{\mathrm{r}}^{i} $ RI 生态风险评价
Ecological risk assessment<30 <70 轻微危害 30 — 60 70 — 140 中等危害 60 — 120 140 — 280 较强危害 120 — 240 280 — 560 很强危害 ≥240 ≥560 极强危害 表 3 重金属日均暴露量模型参数含义及取值
Table 3. Parameters and values for average daily exposure dose model of heavy metals
参数
Parameters含义
Definitions单位
Units取值Values 参考文献
References成年男性Male 成年女性Female 儿童Children C 重金属浓度 mg·kg−1 本研究 IngR 摄食降尘速率 mg·d−1 100 100 200 [26] InhR 呼吸速率 m3·d−1 18.1 14.6 7.63 [25] CF 单位转换 kg·mg−1 1×10−6 1×10−6 1×10−6 [26] EF 暴露频率 d·a−1 350 350 320 [27] ED 暴露年限 a 24 24 6 [26] BW 平均体重 kg 67.3 57.7 15.9 [25] AT 平均暴露时间 d 365×ED(非致癌) [28] 365×70 (致癌) PEF 颗粒物排放因子 m3·kg−1 1.36×109 1.36×109 1.36×109 [27] SA 暴露皮肤面积 cm2 2145 2145 1150 [27] AF 皮肤黏着度 mg·cm−2 0.07 0.07 0.2 [25] ABF 皮肤吸收因子 无量纲 0.001 0.001 0.001 [25] 表 4 重金属的参考剂量和致癌斜率因子[13]
Table 4. Reference doses and carcinogenic slope factors of heavy metals
项目
Items单位
UnitsAs Cd Pb Mn Cu Ni Cr Zn RfDing mg·(kg·d)−1 3.00×10−4 1.00×10−3 3.50×10−3 4.60×10−2 4.00×10−2 2.00×10−2 3.00×10−3 0.30 RfDinh mg·(kg·d)−1 3.00×10−4 1.00×10−3 3.52×10−3 1.43×10−5 4.02×10−2 2.06×10−2 2.86×10−5 0.30 RfDdermal mg·(kg·d)−1 1.23×10−4 1.00×10−5 5.25×10−4 1.84×10−3 1.20×10−2 5.40×10−3 6.00×10−5 0.06 SFinh (kg·d)·mg−1 15.10 6.30 0.84 42.00 表 5 不同功能区降尘重金属含量统计结果(mg·kg−1)
Table 5. Statistics of heavy metal concentrations of atmospheric deposition in different functional areas(mg·kg−1)
重金属种类
Types of
heavy
metals平均值Average 变化范围
Variation
range变异
系数/%
Variation
coefficient土壤环境
风险筛查值
Soil environmental
risk screening
values河南省土壤
背景值[31]
Soil background values of Henan Province第二类用地
筛选值[32]
Screening
values for
type Ⅱ Land工业区
Industrial
area居民混合区
Residential
area城郊区
Suburban
area全市
City
areaAs 533.61 209.15 52.40 320.44 10.56—1230.84 76.59 25.00 9.80 60.00 Cd 149.77 58.65 13.63 89.80 2.63—368.13 77.23 0.60 0.064 65.00 Pb 6288.38 2222.38 799.66 3738.04 55.44—13903.51 76.20 170.00 21.80 800.00 Mn 919.01 854.76 626.27 833.16 218.00—1550.47 18.47 — 560.00 560.001) Cu 891.27 326.76 108.03 532.45 46.63—2021.24 75.90 100.00 20.00 18000.00 Ni 53.57 45.64 48.43 49.88 17.63—166.27 8.07 190.00 27.30 900.00 Cr 161.26 137.38 124.06 145.34 33.90—368.17 12.97 250.00 63.30 250.002) Zn 2180.66 2875.29 1357.09 2206.62 356.39—8891.05 34.44 300.00 62.50 300.002) Al3) 18023.66 13705.52 12595.17 15435.17 2595.42—27677.60 18.23 — — — 注:“—”表示无数据;1)表示选用河南省土壤背景值;2)表示选用土壤环境风险筛查值;3)参比元素不作讨论.
Note: “—” indicates no data, 1) indicates that Henan soil background value was selected, 2) indicates that environmental risk screening values was selected, 3) indicates reference element was not discussed.表 6 全国部分城市不同功能区降尘重金属含量对比(mg·kg−1)
Table 6. Comparison of heavy metals concentrations in atmospheric deposition from different functional areas of other cities (mg·kg−1)
城市
Cities地域
Regions类型
TypesAs Cd Pb Mn Cu Ni Cr Zn 参考文献
References河南省某市 华中 工业混合区 371.38 104.21 4255.38 886.885 609.015 49.605 149.32 2527.975 本研究 非工业区 52.40 13.63 799.66 626.27 108.03 52.38 141.56 1357.09 黄石 华中 工业区 — — 296.84 839.01 555.84 — 652.64 15343.27 [33] 非工业区 — — 391.32 799.60 696.09 — 391.09 3659.07 厦门 华东 工业区 — — 205.00 811.00 621.00 52.58 248.00 4245.00 [34] 非工业区 — — 135.00 785.33 365.50 34.14 145.50 4778.50 天津 华北 工业区 — — 4696.15 — 226.58 44.32 64.54 5846.24 [35] 非工业区 27.38 1.73 82.50 397.65 201.08 37.05 — 736.43 [36] 宝鸡 西北 工业区 — 65.50 2630.5 — 131.10 21.70 79.50 4449.30 [17] 非工业区 — 4.21 223.20 — 65.80 64.50 60.80 343.80 [37] 葫芦岛 东北 工业区 — 72.84 533.20 — 264.40 — — 5271.01 [38] 南丹 华南 工业区 3912. 08 58.67 981.40 — 521.36 — — 4252.10 [39] 个旧 西南 工业区 — 37.13 670.61 — 2531.00 55.01 165.26 4650.85 [40] 北京 华北 非工业区 — 4.00 154.80 — 158.90 46.85 134.30 741.25 [41] 南京 华东 非工业区 17.30 1.92 119.00 602.00 141.00 115.00 133.00 585.00 [15] 兰州 西北 非工业区 — 4.40 129.75 499.01 83.07 38.97 84.76 367.02 [3] 全国工业区 369.39 22.02 861.72 — 332.67 50.10 206.97 2319.00 [42] 全国非工业区 38.16 3.31 170.97 — 116.12 42.51 132.82 603.60 表 7 不同功能区不同暴露途径降尘重金属非致癌风险(HQ)
Table 7. Non-carcinogenic risk (HQ) of heavy metals to human health under various exposure approaches in atmospheric deposition from different functional areas
功能区
Areas元素
Elements成年男Male 成年女Female 儿童Children HQing HQinh HQdermal HQing HQinh HQdermal HQing HQinh HQdermal 工业区
Industrial
areaAs 2.66 3.54×10−4 9.73×10−3 3.10 3.33×10−4 1.13×10−2 20.6 5.77×10−4 5.77×10−2 Cd 2.25×10−1 2.99×10−5 3.38×10−2 3.02×10−1 2.82×10−5 3.94×10−2 1.74 4.88×10−5 2.00×10−1 Pb 2.66 3.52×10−4 2.66×10−2 3.10 3.31×10−4 3.11×10−2 20.59 5.74×10−4 1.58×10−1 Mn 2.87×10−2 1.23×10−2 1.08×10−3 3.35×10−2 1.16×10−2 1.26×10−3 2.22×10−1 2.01×10−2 6.39×10−3 Cu 3.30×10−2 4.37×10−6 1.65×10−4 3.85×10−2 4.11×10−6 1.93×10−4 2.55×10−1 7.13×10−6 9.79×10−4 Ni 4.15×10−3 5.36×10−7 2.31×10−5 4.84×10−3 5.05×10−7 2.69×10−5 3.21×10−2 8.75×10−7 1.37×10−4 Cr 8.05×10−2 1.12×10−3 6.05×10−3 9.39×10−2 1.06×10−3 7.05×10−3 6.23×10−1 1.83×10−3 3.58×10−2 Zn 1.01×10−2 1.35×10−6 7.61×10−5 1.18×10−2 1.27×10−6 8.87×10−5 7.84×10−2 2.20×10−6 4.51×10−4 居民
混合区
Residential
areaAs 9.93×10−1 1.32×10−4 3.64×10−3 1.16 1.24×10−4 4.24×10−3 7.69 2.16×10−4 2.16×10−2 Cd 8.99×10−2 1.20×10−5 1.35×10−2 1.21×10−1 1.13×10−5 1.57×10−2 6.96×10−1 1.95×10−5 8.00×10−2 Pb 9.05×10−1 1.20×10−4 9.06×10−3 1.06 1.13×10−4 1.06×10−2 7.00 1.95×10−4 5.37×10−2 Mn 2.72×10−2 1.16×10−2 1.02×10−3 3.17×10−2 1.10×10−2 1.19×10−3 2.10×10−1 1.90×10−2 6.05×10−3 Cu 1.16×10−2 1.54×10−6 5.83×10−5 1.36×10−2 1.45×10−6 6.79×10−5 9.01×10−2 2.51×10−6 3.45×10−4 Ni 3.74×10−3 4.83×10−7 2.08×10−5 4.36×10−3 4.54×10−7 2.42×10−5 2.89×10−2 7.88×10−7 1.23×10−4 Cr 6.52×10−2 9.11×10−4 4.90×10−3 7.61×10−2 8.57×10−4 5.71×10−3 5.05×10−1 1.49×10−3 2.90×10−2 Zn 1.76×10−2 2.34×10−6 1.32×10−4 2.05×10−2 2.20×10−6 1.54×10−4 1.36×10−1 3.82×10−6 7.82×10−4 城郊区
Suburban
areaAs 2.49×10−1 3.31×10−5 9.11×10−4 2.90×10−1 3.12×10−5 1.06×10−3 1.93 5.40×10−5 5.40×10−3 Cd 1.94×10−2 2.58×10−6 2.92×10−3 2.61×10−2 2.43×10−6 3.40×10−3 1.50×10−1 4.22×10−6 1.73×10−2 Pb 3.26×10−1 4.31×10−5 3.26×10−3 3.80×10−1 4.05×10−5 3.80×10−3 2.52 7.03×10−5 1.93×10−2 Mn 1.94×10−2 8.30×10−3 7.28×10−4 2.26×10−2 7.81×10−3 8.49×10−4 1.50×10−1 1.35×10−2 4.32×10−3 Cu 3.85×10−3 5.10×10−7 1.93×10−5 4.49×10−3 4.79×10−7 2.25×10−5 2.98×10−2 8.31×10−7 1.14×10−4 Ni 3.73×10−3 4.82×10−7 2.08×10−5 4.35×10−3 4.54×10−7 2.42×10−5 2.89×10−2 7.87×10−7 1.23×10−4 Cr 6.72×10−2 9.39×10−4 5.05×10−3 7.84×10−2 8.83×10−4 5.89×10−3 5.20×10−1 1.53×10−3 2.99×10−2 Zn 6.45×10−3 8.58×10−7 4.84×10−5 7.52×10−3 8.07×10−7 5.64×10−5 4.99×10−2 1.40×10−6 2.87×10−4 表 8 不同功能区降尘重金属非致癌风险指数(HI)
Table 8. Non-carcinogenic health risks of heavy metals in atmospheric deposition from different functional areas
元素
Elements工业区Industrial area 居民混合区Residential area 城郊区Suburban area 成年男
Male成年女
Female儿童
Children成年男
Male成年女
Female儿童
Children成年男
Male成年女
Female儿童
ChildrenAs 2.67 3.11 20.62 9.97×10−1 1.16 7.71 2.50×10−1 2.91×10−1 1.93 Cd 2.59×10−1 3.41×10−1 1.94 1.03×10−1 1.36×10−1 7.76×10−1 2.23×10−2 2.95×10−2 1.68×10−1 Pb 2.69 3.13 20.75 9.14×10−1 1.07 7.06 3.29×10−1 3.84×10−1 2.54 Mn 4.21×10−2 4.63×10−2 2.49×10−1 3.99×10−2 4.39×10−2 2.36×10−1 2.84×10−2 3.13×10−2 1.68×10−1 Cu 3.32×10−2 3.87×10−2 2.56×10−1 1.17×10−2 1.36×10−2 9.04×10−2 3.87×10−3 4.51×10−3 2.99×10−2 Ni 4.18×10−3 4.87×10−3 3.23×10−2 3.76×10−3 4.38×10−3 2.91×10−2 3.75×10−3 4.38×10−3 2.90×10−2 Cr 8.77×10−2 1.02×10−1 6.61×10−1 7.11×10−2 8.27×10−2 5.36×10−1 7.32×10−2 8.52×10−2 5.52×10−1 Zn 1.02×10−2 1.19×10−2 7.89×10−2 1.77×10−2 2.07×10−2 1.37×10−1 6.49×10−3 7.57×10−3 5.02×10−2 表 9 不同功能区降尘重金属致癌风险指数
Table 9. Carcinogenic health risks of heavy metals in atmospheric deposition from different functional areas
元素
Elements工业区Industrial area 居民混合区Residential area 城郊区Suburban area 成年男
Male成年女
Female儿童
Children成年男
Male成年女
Female儿童
Children成年男
Male成年女
Female儿童
ChildrenAs 5.49×10−7 5.17×10−7 2.24×10−7 2.05×10−7 1.93×10−7 8.37×10−8 5.14×10−8 4.84×10−8 2.10×10−8 Cd 6.46×10−8 6.08×10−8 2.64×10−8 2.59×10−8 2.43×10−8 1.05×10−8 5.58×10−9 5.25×10−9 2.28×10−9 Ni 3.18×10−9 2.99×10−9 1.30×10−9 2.87×10−9 2.70×10−9 1.17×10−9 2.86×10−9 2.69×10−9 1.17×10−9 Cr 4.63×10−7 4.36×10−7 1.89×10−7 3.75×10−7 3.53×10−7 1.53×10−7 3.87×10−7 3.64×10−7 1.58×10−7 TCR 1.08×10−6 1.02×10−6 4.40×10−7 6.09×10−7 5.73×10−7 2.48×10−7 4.46×10−7 4.20×10−7 1.82×10−7 -
[1] 黄文, 王胜利. 兰州市采暖期和非采暖期大气降尘重金属的分布特征及来源 [J]. 环境科学, 2022, 43(2): 597-607. HUANG W, WANG S L. Distribution characteristics and sources of heavy metals in atmospheric deposition during heating and non-heating period in Lanzhou [J]. Environmental Science, 2022, 43(2): 597-607(in Chinese).
[2] ABUDUWAILIL J, ZHANG Z Y, JIANG F Q. Evaluation of the pollution and human health risks posed by heavy metals in the atmospheric dust in Ebinur Basin in Northwest China [J]. Environmental Science and Pollution Research International, 2015, 22(18): 14018-14031. doi: 10.1007/s11356-015-4625-1 [3] 李萍, 薛粟尹, 王胜利, 等. 兰州市大气降尘重金属污染评价及健康风险评价 [J]. 环境科学, 2014, 35(3): 1021-1028. LI P, XUE S Y, WANG S L, et al. Pollution evaluation and health risk assessment of heavy metals from atmospheric deposition in Lanzhou [J]. Environmental Science, 2014, 35(3): 1021-1028(in Chinese).
[4] PAN Y P, WANG Y S. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China [J]. Atmospheric Chemistry and Physics, 2015, 15(2): 951-972. doi: 10.5194/acp-15-951-2015 [5] GOPE M, MASTO R E, GEORGE J, et al. Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India [J]. Ecotoxicology and Environmental Safety, 2017, 138: 231-241. doi: 10.1016/j.ecoenv.2017.01.008 [6] 杨新明, 钟雅琪, 李国锋, 等. 典型工业城市大气降尘中重金属分布特征及其来源解析: 以济南市为例 [J]. 环境化学, 2022, 41(1): 94-103. doi: 10.7524/j.issn.0254-6108.2020090803 YANG X M, ZHONG Y Q, LI G F, et al. Distribution characteristic and source apportionment of heavy metals in atmospheric dust in a typical industrial city—A case study of Jinan [J]. Environmental Chemistry, 2022, 41(1): 94-103(in Chinese). doi: 10.7524/j.issn.0254-6108.2020090803
[7] WEERASUNDARA L, MAGANA-ARACHCHI D N, ZIYATH A M, et al. Health risk assessment of heavy metals in atmospheric deposition in a congested city environment in a developing country: Kandy City, Sri Lanka [J]. Journal of Environmental Management, 2018, 220: 198-206. [8] QIU K Y, XING W Q, SCHECKEL K G, et al. Temporal and seasonal variations of As, Cd and Pb atmospheric deposition flux in the vicinity of lead smelters in Jiyuan, China [J]. Atmospheric Pollution Research, 2016, 7(1): 170-179. doi: 10.1016/j.apr.2015.09.003 [9] CHEN L, ZHOU S L, WU S H, et al. Concentration, fluxes, risks, and sources of heavy metals in atmospheric deposition in the Lihe River watershed, Taihu region, Eastern China [J]. Environmental Pollution, 2019, 255: 113301. doi: 10.1016/j.envpol.2019.113301 [10] YAN Y, CHI H F, LIU J R, et al. Provenance and bioaccessibility of rare earth elements in atmospheric particles in areas impacted by the optoelectronic industry [J]. Environmental Pollution, 2020, 263: 114349. doi: 10.1016/j.envpol.2020.114349 [11] WANG J H, ZHANG X, YANG Q, et al. Pollution characteristics of atmospheric dustfall and heavy metals in a typical inland heavy industry city in China [J]. Journal of Environmental Sciences, 2018, 71: 283-291. doi: 10.1016/j.jes.2018.05.031 [12] 栾慧君, 塞古, 徐蕾, 等. 徐州北郊大气降尘重金属污染特征与风险评价 [J]. 中国环境科学, 2020, 40(11): 4679-4687. doi: 10.3969/j.issn.1000-6923.2020.11.005 LUAN H J, SÉKOU M C, XU L, et al. Characteristics and risk assessment of heavy metals from atmospheric deposition in northern suburban of Xuzhou [J]. China Environmental Science, 2020, 40(11): 4679-4687(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.11.005
[13] WEI X, GAO B, WANG P, et al. Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China [J]. Ecotoxicology and Environmental Safety, 2015, 112: 186-192. doi: 10.1016/j.ecoenv.2014.11.005 [14] HUANG H, JIANG Y, XU X Y, et al. In vitro bioaccessibility and health risk assessment of heavy metals in atmospheric particulate matters from three different functional areas of Shanghai, China [J]. Science of the Total Environment, 2018, 610/611: 546-554. doi: 10.1016/j.scitotenv.2017.08.074 [15] WANG J H, LI S W, CUI X Y, et al. Bioaccessibility, sources and health risk assessment of trace metals in urban park dust in Nanjing, Southeast China [J]. Ecotoxicology and Environmental Safety, 2016, 128: 161-170. doi: 10.1016/j.ecoenv.2016.02.020 [16] PAN H Y, LU X W, LEI K. A comprehensive analysis of heavy metals in urban road dust of Xi'an, China: Contamination, source apportionment and spatial distribution [J]. Science of the Total Environment, 2017, 609: 1361-1369. doi: 10.1016/j.scitotenv.2017.08.004 [17] 刘杰, 高敏, 梁俊宁, 等. 陕西省某工业园区春季大气降尘重金属污染特征及评价 [J]. 环境科学研究, 2019, 32(7): 1195-1203. LIU J, GAO M, LIANG J N, et al. Characteristics and assessment of heavy metal pollution in spring atmospheric dust of an industrial park in Shaanxi Province [J]. Research of Environmental Sciences, 2019, 32(7): 1195-1203(in Chinese).
[18] WU H Y, YANG F, LI H P, et al. Heavy metal pollution and health risk assessment of agricultural soil near a smelter in an industrial city in China [J]. International Journal of Environmental Health Research, 2020, 30(2): 174-186. doi: 10.1080/09603123.2019.1584666 [19] SHEN F, LIAO R M, ALI A, et al. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China [J]. Ecotoxicology and Environmental Safety, 2017, 139: 254-262. doi: 10.1016/j.ecoenv.2017.01.044 [20] XING W Q, ZHAO Q, SCHECKEL K G, et al. Inhalation bioaccessibility of Cd, Cu, Pb and Zn and speciation of Pb in particulate matter fractions from areas with different pollution characteristics in Henan Province, China [J]. Ecotoxicology and Environmental Safety, 2019, 175: 192-200. doi: 10.1016/j.ecoenv.2019.03.062 [21] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach [J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [22] 白雯宇, 徐勃, 郭丽瑶, 等. 淄博市冬季PM2.5载带金属元素污染特征、生态风险评价及来源分析 [J]. 环境科学, 2022, 43(5): 2336-2342. BAI W Y, XU B, GUO L Y, et al. Characteristics, ecological risk assessment, and sources of the polluted metallic elements in PM2.5 during winter in Zibo City [J]. Environmental Science, 2022, 43(5): 2336-2342(in Chinese).
[23] HUANG S S, TU J, LIU H Y, et al. Multivariate analysis of trace element concentrations in atmospheric deposition in the Yangtze River Delta, East China [J]. Atmospheric Environment, 2009, 43(36): 5781-5790. doi: 10.1016/j.atmosenv.2009.07.055 [24] HUANG J L, WU Y Y, SUN J X, et al. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model [J]. Journal of Hazardous Materials, 2021, 415: 125629. doi: 10.1016/j.jhazmat.2021.125629 [25] 王丽丽, 金囝囡, 武志宏, 等. 不同类型施工降尘中重金属污染特征及健康风险评价 [J]. 中国环境科学, 2021, 41(3): 1055-1065. doi: 10.3969/j.issn.1000-6923.2021.03.007 WANG L L, JIN J N, WU Z H, et al. Heavy metal pollution characteristics and associated health risk assessment in different types of construction dust [J]. China Environmental Science, 2021, 41(3): 1055-1065(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.03.007
[26] US EPA. Supplemental guidance for developing soil screening levels for super fund sites [R]. Washington DC: Office of Solid Waste and Emergency Response, 2002. [27] 李如忠, 周爱佳, 童芳, 等. 合肥市城区地表灰尘重金属分布特征及环境健康风险评价 [J]. 环境科学, 2011, 32(9): 2661-2668. LI R Z, ZHOU A J, TONG F, et al. Distribution of metals in urban dusts of Hefei and health risk assessment [J]. Environmental Science, 2011, 32(9): 2661-2668(in Chinese).
[28] US EPA. Risk-assessment guidance for Superfund. Volume 1. Human Health Evaluation Manual. Part A. Interim report (Final) [R]. Washington: DC: Office of Emergency and Remedial Response, 1989. [29] IARC. Outdoor air pollution: IARC monographs on the evalution of carcinogenic risks to humans volume 109 [M]. IARC Publications, 2015. [30] 生态环境部, 国家市场监督管理总局. 土壤环境质量 农用地土壤污染风险管控标准: GB 15618—2018[S]. 北京: 中国环境出版集团, 2019. Ministry of Ecology and Environment of the People’s Republic of China, State Administration for Market Regulation. Soil environmental quality Risk control standard for soil contamination of agricultural land: GB 15618—2018[S]. Beijing: China Environmental Science Pres, 2019 (in Chinese).
[31] 邵丰收, 周皓韵. 河南省主要元素的土壤环境背景值 [J]. 河南农业, 1998(10): 29. SHAO F S, ZHOU H Y. Soil environmental background values of major elements in Henan Province [J]. Agriculture of Henan, 1998(10): 29(in Chinese).
[32] 生态环境部, 国家市场监督管理总局. 土壤环境质量 建设用地土壤污染风险管控标准: GB 36600—2018[S]. 北京: 中国环境出版集团, 2019. Ministry of Ecology and Environment of the People’s Republic of China, State Administration for Market Regulation. Soil environmental quality Risk control standard for soil contamination of development land: GB 36600—2018[S]. Beijing: China Environmental Science Pres, 2019(in Chinese).
[33] 姚瑞珍, 张勇, 王亚良, 等. 黄石市大气降尘中重金属污染特征与评价 [J]. 地球与环境, 2016, 44(2): 212-218. YAO R Z, ZHANG Y, WANG Y L, et al. Distribution characteristics and risk assessment of heavy metals in atmospheric dustfall of Huangshi City, China [J]. Earth and Environment, 2016, 44(2): 212-218(in Chinese).
[34] 温先华, 胡恭任, 于瑞莲, 等. 厦门市大气降尘中重金属生态风险评价与源解析 [J]. 地球与环境, 2015, 43(1): 1-7. WEN X H, HU G R, YU R L, et al. Ecological risk assessment and source analysis of heavy metals in dustfall of Xiamen City, China [J]. Earth and Environment, 2015, 43(1): 1-7(in Chinese).
[35] 邢竹. 天津市某工业区降尘重金属特征分析 [J]. 中国科技信息, 2017(24): 79-80. XING Z. Characteristics of heavy metals in dustfall in an industrial area of Tianjin [J]. China Science and Technology Information, 2017(24): 79-80(in Chinese).
[36] 李越洋, 姬亚芹, 王士宝, 等. 天津市春季道路降尘PM2.5中重金属污染特征及健康风险评价 [J]. 环境科学研究, 2018, 31(5): 853-859. LI Y Y, JI Y Q, WANG S B, et al. Pollution characteristics and health risk assessment of PM2.5-bound heavy metals in road dust deposition during spring in Tianjin City [J]. Research of Environmental Sciences, 2018, 31(5): 853-859(in Chinese).
[37] 黄战胜, 郭乖霞, 叶鑫, 等. 宝鸡市大气降尘中重金属元素来源分析 [J]. 四川环境, 2022, 41(2): 32-36. HUANG Z S, GUO G X, YE X, et al. Source analysis of heavy metal elements in atmospheric dust in Baoji City [J]. Sichuan Environment, 2022, 41(2): 32-36(in Chinese).
[38] ZHENG N, LIU J S, WANG Q C, et al. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China [J]. Science of the Total Environment, 2010, 408(4): 726-733. doi: 10.1016/j.scitotenv.2009.10.075 [39] 韦妮玉, 张新英, 林善春, 等. 桂西北矿区道路灰尘重金属污染及健康风险评价 [J]. 环境与可持续发展, 2016, 41(5): 167-170. doi: 10.3969/j.issn.1673-288X.2016.05.045 WEI N Y, ZHANG X Y, LIN S C, et al. Health risk assessment of heavy metals of street dust from northwest Guangxi mining area [J]. Environment and Sustainable Development, 2016, 41(5): 167-170(in Chinese). doi: 10.3969/j.issn.1673-288X.2016.05.045
[40] GUO G H, ZHANG D G, Yuntao, et al. Source apportionment and source-specific health risk assessment of heavy metals in size-fractionated road dust from a typical mining and smelting area, Gejiu, China [J]. Environmental Science and Pollution Research International, 2021, 28(8): 9313-9326. doi: 10.1007/s11356-020-11312-y [41] 熊秋林, 赵文吉, 束同同, 等. 北京降尘重金属污染水平及其空间变异特征 [J]. 环境科学研究, 2016, 29(12): 1743-1750. XIONG Q L, ZHAO W J, SHU T T, et al. Heavy metal pollution levels and spatial variation characteristics of dust deposition in Beijing [J]. Research of Environmental Sciences, 2016, 29(12): 1743-1750(in Chinese).
[42] 何予川, 王明娅, 王明仕, 等. 中国降尘重金属的污染及空间分布特征 [J]. 生态环境学报, 2018, 27(12): 2258-2268. HE Y C, WANG M Y, WANG M S, et al. Pollution and spatial distribution characteristics of heavy metals in dusfall in China [J]. Ecology and Environmental Sciences, 2018, 27(12): 2258-2268(in Chinese).
[43] HAN Y M, DU P X, CAO J J, et al. Multivariate analysis of heavy metal contamination in urban dusts of Xi'an, Central China [J]. Science of the Total Environment, 2006, 355(1/2/3): 176-186. [44] 舒嫒嫒, 柏荣耀, 石俊豪, 等. 孝感市开放源扬尘重金属污染特征、来源及健康风险评价 [J]. 环境化学, 2022, 41(2): 499-510. doi: 10.7524/j.issn.0254-6108.2021042302 SHU A A, BAI R Y, SHI J H, et al. Pollution characteristics, sources and health risk assessment of heavy metals in open-source dusts in Xiaogan City [J]. Environmental Chemistry, 2022, 41(2): 499-510(in Chinese). doi: 10.7524/j.issn.0254-6108.2021042302
[45] 开建荣, 王彩艳, 牛艳, 等. 银川市大气沉降元素分布特征及来源解析 [J]. 环境科学与技术, 2020, 43(12): 96-103. KAI J R, WANG C Y, NIU Y, et al. Distribution characteristics and source analysis of atmospheric fallout elements in Yinchuan City [J]. Environmental Science & Technology, 2020, 43(12): 96-103(in Chinese).
[46] 柴育红, 王明新, 赵兴青. 重工业区户外灰尘重金属含量水平及其生态和健康风险评估 [J]. 环境化学, 2019, 38(6): 1375-1384. doi: 10.7524/j.issn.0254-6108.2018082802 CHAI Y H, WANG M X, ZHAO X Q. Levels, ecological and health risk assessments of heavy metals in outdoor dust of a heavy industrial area [J]. Environmental Chemistry, 2019, 38(6): 1375-1384(in Chinese). doi: 10.7524/j.issn.0254-6108.2018082802