-
全氟及多氟烷基化合物(per- and polyfluoroalkyl substances,PFASs)是一类人工合成的有机氟化物,其结构上至少存在一个完全氟化的甲基(—CF3)或亚甲基(—CF2—)碳[1]. 由于C-F键极高的化学键能(460 kJ·mol−1)[2],PFASs具有极强的稳定性,同时具有疏水疏脂、耐高温、耐氧化的性质,能在自然环境中长久稳定地存在[3].
据统计,人工合成的PFASs已逾4700种,仅2000年至2017年,就有超过3000 t PFASs被合成,并被用于塑料、橡胶、电子工业产品以及油漆的生产[4]. 长期的生产使用使得PFASs不断在环境中积累,目前,在中国东南部地区河流水[5]、约旦Zarqa河两岸土壤[6]、北极圈大气[7]等全球范围环境介质中内均有PFASs检出. 研究表明,环境中的PFASs可以通过饮用水和食物链传递作用进入人体,并造成生殖系统损伤[8]、免疫系统损伤[9]以及神经性伤害[10]. 全氟辛烷磺酸(perfluorooctane sulfonate,PFOS)和全氟辛酸(perfluorooctanoic acid,PFOA)是环境中最典型的两种PFASs,分别于2009年和2019年被正式列入《斯德哥尔摩公约》. 与此同时,欧盟2015年颁布的《水框架指令》中规定地表水中PFOS年平均浓度不得超过0.65 ng·L−1,最大浓度不得超过65 ng·L−1;2016年,美国环境保护署(EPA)设立了饮用水中PFOS和PFOA总浓度低于70 ng·L−1的健康标准. 2014年我国原环保部和农业部等12部委发布的文件要求,五年内确保PFOS在特定豁免用途全部淘汰. 在《重点管控新污染物清单(2021年版)》中重申,禁止PFOS类物质生产,并严禁生产、使用和进出口PFOA类物质. 尽管PFOS、PFOA等长链PFASs已被限制生产使用,仍有大量短链或含有其他新兴PFASs替代品被不断开发应用,环境中可检出PFASs种类不断增加,如何解决PFASs污染已逐渐成为当下最受关注的环境问题之一.
环境水体是环境中PFASs的重要储存库[11-12],由于PFASs分子结构的特殊性,PFASs在水环境中的分布及其与不同环境介质的结合状态相比传统疏水有机污染物差异较大[13-15]. 此外,水的地球循环过程、水力作用也会影响PFASs的环境迁移与转化过程[16-17]. 因此,厘清PFASs在水环境中的迁移转化规律,并揭示多种环境介质对该过程的影响,对于科学评估PFASs的环境污染现状并进一步有效治理PFASs污染具有重要科学意义. 在过去的数十年间,有关PFASs的综述研究已有较多,例如,Gagliano、Wei、 Bolan等[18-25] 总结比较了PFASs在大气、土壤及水环境中的修复技术,包括吸附法、水热法、超声法、光降解及生物降解法等. Podder 等[26-28]对现有研究中PFASs的潜在暴露途径及生物毒性进行了总结. 此外,Kurwadkar等[29-32]回顾了PFASs在自然水环境中的污染浓度和分布特征、暴露及现场分析方法. 上述研究总结归纳了已有研究中报道的PFASs检测分析手段、修复技术,或是针对特定区域、环境介质、单一类别PFASs进行了统计分析,而对于全球尺度上地表水中全类别PFASs的污染水平研究依然缺乏. 本文总结归纳了多种地表水体中PFASs污染现状与时空分布特征,概述了地表水体中PFASs的主要来源及迁移规律,并揭示了影响该过程的多个环境要素及作用机制,为后续研究PFASs在环境中的迁移转化过程提供理论支撑,并对未来新型PFASs研发方向与监测手段进行了展望.
地表水中全氟及多氟烷基化合物(PFASs)的污染现状研究进展
Research progress on the pollution status of per-and polyfluoroalkyl substances (PFASs) in surface water: A review
-
摘要: 近年来,全氟及多氟烷基化合物(per- and polyfluoroalkyl substances,PFASs)的大量生产使用,使得其在自然水体中的浓度日益升高. 由于PFASs的生物毒性及强稳定性,环境中的PFASs严重威胁到生态环境及人类健康. 目前,多个国家及相关国际组织开始对地表水中的PFASs展开检测,但目前的监测基本属于点源监测,大范围、长时间维度的监测依然缺乏,从而无法准确揭示PFASs的时空赋存特征. 本文概述了PFASs在地表水中的赋存水平,同时阐述了地表水环境中PFASs的水平分布和垂直分布特征,并揭示了地表水中PFASs污染水平与组成的时间变化规律,总结了影响PFASs污染的主要因素,对后续PFASs监测提出了建议,以期为准确评估水环境中PFASs的污染状况提供依据.
-
关键词:
- 全氟及多氟烷基化合物 /
- 地表水 /
- 污染特征 /
- 时空差异性.
Abstract: Recently, the mass production and usage of per- and polyfluoroalkyl substances (PFASs) have caused the serious PFASs pollution in natural water. Due to the biological toxicity and the strong persistence, PFASs pollution is threating the ecological environment and human health. Nowadays, many countries and international organizations have begun to monitor the PFASs pollution in surface water. However, the current monitoring only focus on the point source, and there still lacking the large-scale and long-term monitoring. Therefore, it is impossible to accurately reveal the spatiotemporal characteristics of PFASs pollution. This study summarizes the occurrence level of PFASs in surface water, and expounding the distribution characteristics of PFASs in the surface water. Moreover, the temporal variation law of PFASs pollution in surface water was revealed, and some environmental factors were also discussed. Finally, the follow-up suggestions on PFASs monitoring are proposed, providing a basis for accurately assessing the pollution status of PFASs in the environment. -
表 1 文献中的新兴多氟及全氟烷基化合物
Table 1. Emerging polyfluorinated and perfluoroalkyl compounds reported in literatures
名称
Name简称
Abbreviation分子式
Molecular formula地点
PlaceCAS 参考文献
Reference短链全氟烷基磺酸及全氟烷基羧酸
Short chain perfluorooctane sulfonates and perfluorooctanoic acids全氟戊酸
Perfluoropentanoic acidPFBA C4F9COOH 西班牙 2706-90-3 [49] 全氟已酸
Perfluorohexanoic acidPFHxA C5F11COOH 中国 307-24-4 [50] 全氟丁烷磺酸
Perfluorobutanesulfonic acidPFBS C4F9SO3H 中国 375-73-5 [5] 多氟烷基化合物
Polyfluoroalkyl compounds1H,1H,2H,2H-全氟辛磺酸
1H,1H,2H,2H-perfluorooctane sulfonic acid6:2FTS C6F13CH2CH2SO3H 中国 27619-97-2 [51] 全氟和多氟烷醚类化合物
Perfluoropolyethers4- 8-二氧-3H-全氟辛酸铵
Ammonium 4,8-dioxa-3H-perfluorononanoateADONA CF3O(CF2)3OCHFCF2COO-NH4 + 中国 958445-44-8 [52] 全氟(2-甲基-3-氧杂己酸)
Undecafluoro-2-methyl-3-oxahexanoic acidHFPO-DA
(Gen-X)C3F7OCF(CF3) COOH
(C3F7OCF( CF3 ) COO-NH4 +)中国 13252-13-6 [52] 全氟-2,5-二甲基-3,6-二氧杂壬酸
Perfluoro(2,5-dimethyl-3,6-dioxanonanoic)acidHFPO-TA C3F7OC6F7OCF(CF3 ) COOH 中国 13252-14-7 [52] 6:2 氯代多氟烷醚磺酸盐
6:2 chlorinated polyfluoroalkyl ether sulfonate6:2 Cl-PFAES
(F-53B)Cl(CF2) nO(CF2)2SO3H 中国 756426-58-1 [53] 环状全氟烷基化合物
Cyclic perfluorinated acid十氟-4-(五氟乙基)环氧己烷磺酸钾盐
PerfluoroethylcyclohexanesulfonatePFECHS C2F5C6F10SO3-K+ 澳大利亚 335-24-0 [54] 表 2 五大洋中典型PFASs的赋存水平
Table 2. Spatial characteristics of PFASs around the area of the five oceans
大洋
Ocean地区
Area主要PFASs
Main PFASs检出浓度/(pg·L−1)
Concentration参考文献
References大西洋
Altantic OceanBay of Biscay of Argentia PFOA
PFOSPFOA 77—980
PFOS 40—250[67] the River Weser PFOA
PFOS∑PFAAs 120—260 [68] 太平洋
Altantic Oceanthe River Qingshui PFOA
PFOSPFOA 3—420 [69] Tokyo Bay PFOA
PFOSPFOA 48—192
PFOS 8—59[70] 印度洋
Indian OceanBay of Bengal coast PFOA
PFOS∑PFAAs 10.6—46.8 [11] Between Asia and Antarctica PFOA
PFOSPFOA 1—441
PFOS 5—23.9[71-72] 北冰洋
Arctic OceanEuropean High Arctic PFOA
PFDA∑PFAAs 0.1—3.6 [39] the Central Arctic PFOA
PFOS∑PFAAs 11—174 [13] 南冰洋
Antarctic OceanAntarctic Peninsula coast PFOA
PFOSPFOA 0—25
PFOS 25—45[64] Coastal Livingston Island PFHpA
PFOA∑PFAAs 94—420 [73] 表 3 长江流域PFASs污染状况
Table 3. Contamination status of PFASs in the Yangtze River Basin
地区
Area检出PFASs总浓度/(ng·L−1)
Concentration主要PFASs
Main PFASs主要PFASs检出浓度/(ng·L−1)
Concentration of main PFASs参考文献
Reference上游 岷江 1.54—30.2 PFBA 0.16—28.4 [74] 青藏高原峡谷区 0.272—2.224 PFBA 0.272—1.796 [75] 宜昌段 <20 PFOA <10 [76] 中游 武汉段 4.16—4.77 PFBS 1.28—1.49 [77] 洞庭湖 18.07—29.95 PFBA
PFOA4.63—11.59
3.22—8.53[78] 洪湖 25.45—63.39 PFOA
PFHxA
PFBA6.25—12.39
2.88—30.67
4.92—10.95[78] 荆州、岳阳、武汉、鄂州、黄石段 2.2—74.56 PFOA
PFBS9.9—16
1.1—40[76] 下游 太湖 10.0—119.8 PFOA
PFHxA2.2—74
<0.4—22[79] 九江至上海段 3.62—31.91 PFOA 6.8—8.2 [76] 黄浦江 39.2—576.2 PFOA
PFOS1.0—403
<286[80] 表 4 几个典型水体中PFASs年度浓度总和对比
Table 4. Comparison of total PFASs concentrations (ng·L−1) in typical surface water samples
地点
Area取样时间
Sampling timeΣPFASs/
(ng·L−1)统计物质
Statistical substancePFOA/
(ng·L−1)PFOS/
(ng·L−1)参考文献
Reference太湖
Lake Taihu2009—2010 80.3 PFBS、PFHxS、PFOS、PFBA、PFPeA、PFHxA、PFHpA、PFOA、PFNA、PFDA 33.2 13.8 [83] 2011—2012 67.8 25.3 9.26 2015 213 71 13.8 2021 339 120 28.5 巢湖
Lake Chao2002 15.2 PFHpA、PFOA、PFNA、PFDA、PFUnA、PFDoA、PFHxS、PFOS、 PFOSA 5.9 6.6 [150] 2011 9.56 PFBA、PFPeA、PFHxA、PFHpA、PFOA、PFNA、PFDA、PFUdA、PFBS、PFHxS、PFOS 5.34 0.05 [151] 2012 21.19 12.68 0.25 2019 55.1 PFBA、PFPeA、PFHxA、PFHpA、PFOA、PFNA、PFDA、PFUnDA、PFDoDA、PFTeDA、PFBS、PFHxS、PFOS 12.6 1.15 [152] 安大略湖
Lake Ontario2012 11.86 PFBA、PFPeA、PFHxA、PFHpA、PFOA、PFNA、PFDA、PFUnA、PFDoA、PFBS、PFHxS、PFOS 2.37 3.95 [153] 2013 13.21 2.52 5.07 2015 15.58 2.23 5.15 易北湖
Lake Eble2011 8.1 PFBS、PFHxS、PFOS、PFBA、PFPeA、PFHxA、PFOA、PFNA、PFDA 1.9 0.91 [154] 2013—2014 16.8 PFBS、PFHxS、PFOS、PFBA、PFPeA、PFHxA、PFHpA、PFOA、PFNA、PFDA、PFUnDA、PFDoDA、6:2FTS、FOSA、HFPO-TA 1.9 ND [69] 2015 26.82 PFBA、PFPeA、PFBS、PFHxA、PFHpA、PFHxS、PFOA、PFHpS、PFNA、PFOS、PFDA、PFUnDA、PFDS、PFDoDA、PFTrDA、PFTeDA 2.37 ND [155] 注:ND,未检出,not detected. -
[1] WANG Z Y, BUSER A M, COUSINS I T, et al. A new OECD definition for per- and polyfluoroalkyl substances [J]. Environmental Science & Technology, 2021, 55(23): 15575-15578. [2] LAU C, ANITOLE K, HODES C, et al. Perfluoroalkyl acids: A review of monitoring and toxicological findings [J]. Toxicological Sciences, 2007, 99(2): 366-394. doi: 10.1093/toxsci/kfm128 [3] GAR ALALM M, BOFFITO D C. Mechanisms and pathways of PFAS degradation by advanced oxidation and reduction processes: A critical review [J]. Chemical Engineering Journal, 2022, 450: 138352. doi: 10.1016/j.cej.2022.138352 [4] GLÜGE J, SCHERINGER M, COUSINS I T, et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS) [J]. Environmental Science:Processes & Impacts, 2020, 22(12): 2345-2373. [5] SUN R, WU M H, TANG L, et al. Perfluorinated compounds in surface waters of Shanghai, China: Source analysis and risk assessment [J]. Ecotoxicology and Environmental Safety, 2018, 149: 88-95. doi: 10.1016/j.ecoenv.2017.11.012 [6] SHIGEI M, AHREN L, HAZAYMEH A, et al. Per- and polyfluoroalkyl substances in water and soil in wastewater-irrigated farmland in Jordan [J]. Science of the Total Environment, 2020, 716: 137057. doi: 10.1016/j.scitotenv.2020.137057 [7] SHA B, JOHANSSON J H, TUNVED P, et al. Sea spray aerosol (SSA) as a source of perfluoroalkyl acids (PFAAs) to the atmosphere: Field evidence from long-term air monitoring [J]. Environmental Science & Technology, 2022, 56(1): 228-238. [8] CHAPARRO-ORTEGA A, BETANCOURT M, ROSAS P, et al. Endocrine disruptor effect of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on porcine ovarian cell steroidogenesis [J]. Toxicology in Vitro, 2018, 46: 86-93. doi: 10.1016/j.tiv.2017.09.030 [9] SHI G H, XIE Y, GUO Y, et al. 6: 2 fluorotelomer sulfonamide alkylbetaine (6: 2 FTAB), a novel perfluorooctane sulfonate alternative, induced developmental toxicity in zebrafish embryos [J]. Aquatic Toxicology, 2018, 195: 24-32. doi: 10.1016/j.aquatox.2017.12.002 [10] CAO Y X, NG C. Absorption, distribution, and toxicity of per- and polyfluoroalkyl substances (PFAS) in the brain: a review [J]. Environmental Science:Processes & Impacts, 2021, 23(11): 1623-1640. [11] YAMASHITA N, TANIYASU S, PETRICK G, et al. Perfluorinated acids as novel chemical tracers of global circulation of ocean waters [J]. Chemosphere, 2008, 70(7): 1247-1255. doi: 10.1016/j.chemosphere.2007.07.079 [12] PREVEDOUROS K, COUSINS I T, BUCK R C, et al. Sources, fate and transport of perfluorocarboxylates [J]. Environmental Science & Technology, 2006, 40(1): 32-44. [13] YEUNG L W Y, DASSUNCAO C, MABURY S, et al. Vertical profiles, sources, and transport of PFASs in the Arctic Ocean [J]. Environmental Science & Technology, 2017, 51(12): 6735-6744. [14] ZHANG X M, ZHANG Y X, DASSUNCAO C, et al. North Atlantic Deep Water formation inhibits high Arctic contamination by continental perfluorooctane sulfonate discharges [J]. Global Biogeochemical Cycles, 2017, 31(8): 1332-1343. doi: 10.1002/2017GB005624 [15] NIZZETTO L, GIOIA R, LI J, et al. Biological pump control of the fate and distribution of hydrophobic organic pollutants in water and plankton [J]. Environmental Science & Technology, 2012, 46(6): 3204-3211. [16] GONZÁLEZ-GAYA B, CASAL P, JURADO E, et al. Vertical transport and sinks of perfluoroalkyl substances in the global open ocean [J]. Environmental Science. Processes & Impacts, 2019, 21(11): 1957-1969. [17] TI B W, LI L, LIU J G, et al. Global distribution potential and regional environmental risk of F-53B [J]. Science of the Total Environment, 2018, 640-641: 1365-1371. doi: 10.1016/j.scitotenv.2018.05.313 [18] GAGLIANO E, SGROI M, FALCIGLIA P P, et al. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration [J]. Water Research, 2020, 171: 115381. doi: 10.1016/j.watres.2019.115381 [19] DIXIT F, DUTTA R, BARBEAU B, et al. PFAS removal by ion exchange resins: A review [J]. Chemosphere, 2021, 272: 129777. doi: 10.1016/j.chemosphere.2021.129777 [20] LI J N, PINKARD B R, WANG S, et al. Review: Hydrothermal treatment of per- and polyfluoroalkyl substances (PFAS) [J]. Chemosphere, 2022, 307: 135888. doi: 10.1016/j.chemosphere.2022.135888 [21] CAO H M, ZHANG W L, WANG C P, et al. Sonochemical degradation of poly- and perfluoroalkyl substances - A review [J]. Ultrasonics Sonochemistry, 2020, 69: 105245. doi: 10.1016/j.ultsonch.2020.105245 [22] WEI Z S, XU T Y, ZHAO D Y. Treatment of per- and polyfluoroalkyl substances in landfill leachate: Status, chemistry and prospects [J]. Environmental Science:Water Research & Technology, 2019, 5(11): 1814-1835. [23] BOLAN N, SARKAR B, YAN Y B, et al. Remediation of poly- and perfluoroalkyl substances (PFAS) contaminated soils - To mobilize or to immobilize or to degrade? [J]. Journal of Hazardous Materials, 2021, 401: 123892. doi: 10.1016/j.jhazmat.2020.123892 [24] LI F, DUAN J, TIAN S T, et al. Short-chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment [J]. Chemical Engineering Journal, 2020, 380: 122506. doi: 10.1016/j.cej.2019.122506 [25] WANNINAYAKE D M. Comparison of currently available PFAS remediation technologies in water: A review [J]. Journal of Environmental Management, 2021, 283: 111977. doi: 10.1016/j.jenvman.2021.111977 [26] PODDER A, SADMANI A H M A, REINHART D, et al. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects [J]. Journal of Hazardous Materials, 2021, 419: 126361. doi: 10.1016/j.jhazmat.2021.126361 [27] DELUCA N M, MINUCCI J M, MULLIKIN A, et al. Human exposure pathways to poly- and perfluoroalkyl substances (PFAS) from indoor media: A systematic review protocol [J]. Environment International, 2021, 146: 106308. doi: 10.1016/j.envint.2020.106308 [28] SUNDERLAND E M, HU X C, DASSUNCAO C, et al. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects [J]. Journal of Exposure Science & Environmental Epidemiology, 2019, 29(2): 131-147. [29] KURWADKAR S, DANE J, KANEL S R, et al. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution [J]. Science of the Total Environment, 2022, 809: 151003. doi: 10.1016/j.scitotenv.2021.151003 [30] WINCHELL L J, WELLS M J M, ROSS J J, et al. Analyses of per- and polyfluoroalkyl substances (PFAS) through the urban water cycle: Toward achieving an integrated analytical workflow across aqueous, solid, and gaseous matrices in water and wastewater treatment [J]. Science of the Total Environment, 2021, 774: 145257. doi: 10.1016/j.scitotenv.2021.145257 [31] BANZHAF S, FILIPOVIC M, LEWIS J, et al. A review of contamination of surface-, ground-, and drinking water in Sweden by perfluoroalkyl and polyfluoroalkyl substances (PFASs) [J]. Ambio, 2017, 46(3): 335-346. doi: 10.1007/s13280-016-0848-8 [32] XIAO F. Emerging poly- and perfluoroalkyl substances in the aquatic environment: A review of current literature [J]. Water Research, 2017, 124: 482-495. doi: 10.1016/j.watres.2017.07.024 [33] LIU Y Q, ZHANG Y, LI J F, et al. Distribution, partitioning behavior and positive matrix factorization-based source analysis of legacy and emerging polyfluorinated alkyl substances in the dissolved phase, surface sediment and suspended particulate matter around coastal areas of Bohai Bay, China [J]. Environmental Pollution, 2019, 246: 34-44. doi: 10.1016/j.envpol.2018.11.113 [34] RUYLE B J, PICKARD H M, LEBLANC D R, et al. Isolating the AFFF signature in coastal watersheds using oxidizable PFAS precursors and unexplained organofluorine [J]. Environmental Science & Technology, 2021, 55(6): 3686-3695. [35] ZHAO S Y, ZHOU T, WANG B H, et al. Different biotransformation behaviors of perfluorooctane sulfonamide in wheat (Triticum aestivum L. ) from earthworms (Eisenia fetida) [J]. Journal of Hazardous Materials, 2018, 346: 191-198. doi: 10.1016/j.jhazmat.2017.12.018 [36] ZHU H K, KANNAN K. Distribution and partitioning of perfluoroalkyl carboxylic acids in surface soil, plants, and earthworms at a contaminated site [J]. Science of The Total Environment, 2019, 647: 954-961. doi: 10.1016/j.scitotenv.2018.08.051 [37] CASAS G, MARTINEZ-VARELA A, VILA-COSTA M, et al. Rain amplification of persistent organic pollutants [J]. Environmental Science & Technology, 2021, 55(19): 12961-12972. [38] RICHARDSON M J, KABIRI S, GRIMISON C, et al. Per- and poly-fluoroalkyl substances in runoff and leaching from AFFF-contaminated soils: a rainfall simulation study [J]. Environmental Science & Technology, 2022, 56(23): 16857-16865. [39] GARNETT J, HALSALL C, VADER A, et al. High concentrations of perfluoroalkyl acids in Arctic Seawater driven by early thawing sea ice [J]. Environmental Science & Technology, 2021, 55(16): 11049-11059. [40] GARNETT J, HALSALL C, THOMAS M, et al. Investigating the uptake and fate of poly- and perfluoroalkylated substances (PFAS) in sea ice using an experimental sea ice chamber [J]. Environmental Science & Technology, 2021, 55(14): 9601-9608. [41] MACINNIS J J, LEHNHERR I, MUIR D C G, et al. Fate and transport of perfluoroalkyl substances from snowpacks into a lake in the high Arctic of Canada [J]. Environmental Science & Technology, 2019, 53(18): 10753-10762. [42] MACINNIS J, DE SILVA A O, LEHNHERR I, et al. Investigation of perfluoroalkyl substances in proglacial rivers and permafrost seep in a high Arctic watershed [J]. Environmental Science:Processes & Impacts, 2022, 24(1): 42-51. [43] FUJII S, POLPRASERT C, TANAKA S, et al. New POPs in the water environment: Distribution, bioaccumulation and treatment of perfluorinated compounds - a review paper [J]. Journal of Water Supply:Research and Technology-Aqua, 2007, 56(5): 313-326. doi: 10.2166/aqua.2007.005 [44] LI X Q, HUA Z L, ZHANG J Y, et al. Interactions between dissolved organic matter and perfluoroalkyl acids in natural rivers and lakes: A case study of the northwest of Taihu Lake Basin, China [J]. Water Research, 2022, 216: 118324. doi: 10.1016/j.watres.2022.118324 [45] LIU Z Z, ZHOU J Q, XU Y L, et al. Distributions and sources of traditional and emerging per- and polyfluoroalkyl substances among multiple environmental media in the Qiantang River watershed, China [J]. RSC Advances, 2022, 12(33): 21247-21254. doi: 10.1039/D2RA02385G [46] 杜国勇, 蒋小萍, 卓丽, 等. 长江流域重庆段水体中全氟化合物的污染特征及风险评价 [J]. 生态环境学报, 2019, 28(11): 2266-2272. doi: 10.16258/j.cnki.1674-5906.2019.11.016 DU G Y, JIANG X P, ZHUO L, et al. Distribution characteristics and risk assessment of perfluorinated compounds in surface water from Chongqing section of the Yangtze River [J]. Ecology and Environmental Sciences, 2019, 28(11): 2266-2272(in Chinese). doi: 10.16258/j.cnki.1674-5906.2019.11.016
[47] 王鑫璇, 张鸿, 王艳萍, 等. 中国七大流域全氟烷基酸污染水平与饮水暴露风险 [J]. 环境科学, 2018, 39(2): 703-710. doi: 10.13227/j.hjkx.201705100 WANG X X, ZHANG H, WANG Y P, et al. Contamination levels and exposure risk via drinking water from perfluoroalkyl acids in seven major drainage basins of China [J]. Environmental Science, 2018, 39(2): 703-710(in Chinese). doi: 10.13227/j.hjkx.201705100
[48] PÉTRÉ M A, SALK K R, STAPLETON H M, et al. Per- and polyfluoroalkyl substances (PFAS) in river discharge: Modeling loads upstream and downstream of a PFAS manufacturing plant in the Cape Fear watershed, North Carolina [J]. Science of The Total Environment, 2022, 831: 154763. doi: 10.1016/j.scitotenv.2022.154763 [49] WANG F, ZHUANG Y R, DONG B Q, et al. Review on per- and poly-fluoroalkyl substances (PFASs) pollution characteristics and possible sources in surface water and precipitation of China [J]. Water, 2022, 14(5): 812. doi: 10.3390/w14050812 [50] JOERSS H, MENGER F, TANG J H, et al. Beyond the tip of the iceberg: suspect screening reveals point source-specific patterns of emerging and novel per- and polyfluoroalkyl substances in German and Chinese rivers [J]. Environmental Science & Technology, 2022, 56(9): 5456-5465. [51] QU Y X, HUANG J, WILLAND W, et al. Occurrence, removal and emission of per- and polyfluorinated alkyl substances (PFASs) from chrome plating industry: A case study in Southeast China [J]. Emerging Contaminants, 2020, 6: 376-384. doi: 10.1016/j.emcon.2020.10.001 [52] PAN Y T, ZHANG H X, CUI Q Q, et al. Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water [J]. Environmental Science & Technology, 2018, 52(14): 7621-7629. [53] WANG T, VESTERGREN R, HERZKE D, et al. Levels, isomer profiles, and estimated riverine mass discharges of perfluoroalkyl acids and fluorinated alternatives at the mouths of Chinese Rivers [J]. Environmental Science & Technology, 2016, 50(21): 11584-11592. [54] MARCHIANDI J, SZABO D, DAGNINO S, et al. Occurrence and fate of legacy and novel per- and polyfluoroalkyl substances (PFASs) in freshwater after an industrial fire of unknown chemical stockpiles [J]. Environmental Pollution, 2021, 278: 116839. doi: 10.1016/j.envpol.2021.116839 [55] SUN M, AREVALO E, STRYNAR M, et al. Legacy and emerging perfluoroalkyl substances are important drinking water contaminants in the Cape Fear River watershed of north Carolina [J]. Environmental Science & Technology Letters, 2016, 3(12): 415-419. [56] STRYNAR M, DAGNINO S, MCMAHEN R, et al. Identification of novel perfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs) in natural waters using accurate mass time-of-flight mass spectrometry (TOFMS) [J]. Environmental Science & Technology, 2015, 49(19): 11622-11630. [57] LIN K, HAN T Z, WANG R, et al. Spatiotemporal distribution, ecological risk assessment and source analysis of legacy and emerging per- and polyfluoroalkyl substances in the Bohai Bay, China [J]. Chemosphere, 2022, 300: 134378. doi: 10.1016/j.chemosphere.2022.134378 [58] HAN T Z, CHEN J H, LIN K, et al. Spatial distribution, vertical profiles and transport of legacy and emerging per- and polyfluoroalkyl substances in the Indian Ocean [J]. Journal of Hazardous Materials, 2022, 437: 129264. doi: 10.1016/j.jhazmat.2022.129264 [59] JOERSS H, XIE Z Y, WAGNER C C, et al. Transport of legacy perfluoroalkyl substances and the replacement compound HFPO-DA through the Atlantic gateway to the Arctic Ocean - is the Arctic a sink or a source? [J]. Environmental Science & Technology, 2020, 54(16): 9958-9967. [60] GEBBINK W A, van ASSELDONK L, van LEEUWEN S P J. Presence of emerging per- and polyfluoroalkyl substances (PFASs) in river and drinking water near a fluorochemical production plant in the Netherlands [J]. Environmental Science & Technology, 2017, 51(19): 11057-11065. [61] PAN Y T, ZHANG H X, CUI Q Q, et al. First report on the occurrence and bioaccumulation of hexafluoropropylene oxide trimer acid: An emerging concern [J]. Environmental Science & Technology, 2017, 51(17): 9553-9560. [62] LI Y, FENG X M, ZHOU J, et al. Occurrence and source apportionment of novel and legacy poly/perfluoroalkyl substances in Hai River Basin in China using receptor models and isomeric fingerprints [J]. Water Research, 2020, 168: 115145. doi: 10.1016/j.watres.2019.115145 [63] LIN Y F, RUAN T, LIU A F, et al. Identification of novel hydrogen-substituted polyfluoroalkyl ether sulfonates in environmental matrices near metal-plating facilities [J]. Environmental Science & Technology, 2017, 51(20): 11588-11596. [64] ZHAO Z, XIE Z Y, MÖLLER A, et al. Distribution and long-range transport of polyfluoroalkyl substances in the Arctic, Atlantic Ocean and Antarctic coast [J]. Environmental Pollution, 2012, 170: 71-77. doi: 10.1016/j.envpol.2012.06.004 [65] GONZÁLEZ-GAYA B, DACHS J, ROSCALES J L, et al. Perfluoroalkylated substances in the global tropical and subtropical surface oceans [J]. Environmental Science & Technology, 2014, 48(22): 13076-13084. [66] WEI S, CHEN L Q, TANIYASU S, et al. Distribution of perfluorinated compounds in surface seawaters between Asia and Antarctica [J]. Marine Pollution Bulletin, 2007, 54(11): 1813-1818. doi: 10.1016/j.marpolbul.2007.08.002 [67] BENSKIN J P, MUIR D C G, SCOTT B F, et al. Perfluoroalkyl acids in the Atlantic and Canadian Arctic Oceans [J]. Environmental Science & Technology, 2012, 46(11): 5815-5823. [68] XIE Z Y, ZHAO Z, MÖLLER A, et al. Neutral poly- and perfluoroalkyl substances in air and seawater of the North Sea [J]. Environmental Science and Pollution Research, 2013, 20(11): 7988-8000. doi: 10.1007/s11356-013-1757-z [69] HEYDEBRECK F, TANG J H, XIE Z Y, et al. Alternative and legacy perfluoroalkyl substances: Differences between European and Chinese River/estuary systems [J]. Environmental Science & Technology, 2015, 49(14): 8386-8395. [70] TANIYASU S, KANNAN K, HORII Y, et al. A survey of perfluorooctane sulfonate and related perfluorinated organic compounds in water, fish, birds, and humans from Japan [J]. Environmental Science & Technology, 2003, 37(12): 2634-2639. [71] YAMASHITA N, KANNAN K, TANIYASU S, et al. Analysis of perfluorinated acids at parts-per-quadrillion levels in seawater using liquid chromatography-tandem mass spectrometry [J]. Environmental Science & Technology, 2004, 38(21): 5522-5528. [72] MARTIN J W, MABURY S A, SOLOMON K R, et al. Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss) [J]. Environmental Toxicology and Chemistry, 2003, 22(1): 196-204. doi: 10.1002/etc.5620220126 [73] CASAL P, ZHANG Y F, MARTIN J W, et al. Role of snow deposition of perfluoroalkylated substances at coastal Livingston Island (maritime Antarctica) [J]. Environmental Science & Technology, 2017, 51(15): 8460-8470. [74] 方淑红, 李成, 卞玉霞, 等. 岷江流域全氟化合物的污染特征及排放通量 [J]. 中国环境科学, 2019, 39(7): 2983-2989. doi: 10.3969/j.issn.1000-6923.2019.07.035 FANG S H, LI C, BIAN Y X, et al. Pollution characteristics and flux of perfluoroalkyl substances in Minjiang River [J]. China Environmental Science, 2019, 39(7): 2983-2989(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.07.035
[75] 郑宇, 路国慧, 邵鹏威, 等. 青藏高原东部过渡区水环境中全氟化合物的分布特征 [J]. 环境化学, 2020, 39(5): 1192-1201. doi: 10.7524/j.issn.0254-6108.2019081506 ZHENG Y, LU G H, SHAO P W, et al. Level and distribution of perfluorinated compounds in snow and water samples from the transition zone in eastern Qinghai-Tibet [J]. Environmental Chemistry, 2020, 39(5): 1192-1201(in Chinese). doi: 10.7524/j.issn.0254-6108.2019081506
[76] PAN C G, YING G G, ZHAO J L, et al. Spatiotemporal distribution and mass loadings of perfluoroalkyl substances in the Yangtze River of China [J]. Science of the Total Environment, 2014, 493: 580-587. doi: 10.1016/j.scitotenv.2014.06.033 [77] 周珍, 胡宇宁, 史亚利, 等. 武汉地区水环境中全氟化合物污染水平及其分布特征 [J]. 生态毒理学报, 2017, 12(3): 425-433. ZHOU Z, HU Y N, SHI Y L, et al. Occurrence and distribution of per-and polufluoroalkyl substances in waste water and surface water samples in Wuhan [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 425-433(in Chinese).
[78] 李珍. 长江中游地区湖泊全氟化合物的污染特征及生态风险评估[D]. 武汉: 中国科学院大学(中国科学院武汉植物园), 2019. LI Z. Distribution and risk assessment of perfluoroalkyl substances in lakes from the middle reach of Yangtze River, China[D]. Wuhan: Wuhan Botanical Garden, Chinese Academy of Sciences, 2019(in Chinese).
[79] GUO C S, ZHANG Y, ZHAO X, et al. Distribution, source characterization and inventory of perfluoroalkyl substances in Taihu Lake, China [J]. Chemosphere, 2015, 127: 201-207. doi: 10.1016/j.chemosphere.2015.01.053 [80] SUN Z Y, ZHANG C J, YAN H, et al. Spatiotemporal distribution and potential sources of perfluoroalkyl acids in Huangpu River, Shanghai, China [J]. Chemosphere, 2017, 174: 127-135. doi: 10.1016/j.chemosphere.2017.01.122 [81] 宋娇娇, 汪艺梅, 孙静, 等. 沱江流域典型及新兴全氟/多氟化合物的污染特征及来源解析 [J]. 环境科学, 2022, 43(9): 4522-4531. doi: 10.13227/j.hjkx.202112227 SONG J J, WANG Y M, SUN J, et al. Pollution characteristics and source apportionment of typical and emerging per- and polyfluoroalkylated substances in Tuojiang River Basin [J]. Environmental Science, 2022, 43(9): 4522-4531(in Chinese). doi: 10.13227/j.hjkx.202112227
[82] LU G H, JIAO X C, PIAO H T, et al. The extent of the impact of a fluorochemical industrial park in Eastern China on adjacent rural areas [J]. Archives of Environmental Contamination and Toxicology, 2018, 74(3): 484-491. doi: 10.1007/s00244-017-0458-x [83] YU L, LIU X D, HUA Z L, et al. Spatial and temporal trends of perfluoroalkyl acids in water bodies: A case study in Taihu Lake, China (2009-2021) [J]. Environmental Pollution, 2022, 293: 118575. doi: 10.1016/j.envpol.2021.118575 [84] HUA Z L, GAO C, ZHANG J Y, et al. Perfluoroalkyl acids in the aquatic environment of a fluorine industry-impacted region: Spatiotemporal distribution, partition behavior, source, and risk assessment [J]. Science of The Total Environment, 2023, 857: 159452. doi: 10.1016/j.scitotenv.2022.159452 [85] ZHAO Z, CHENG X H, HUA X, et al. Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers [J]. Environmental Pollution, 2020, 263: 114391. doi: 10.1016/j.envpol.2020.114391 [86] DA SILVA B F, ARISTIZABAL-HENAO J J, AUFMUTH J, et al. Survey of per- and polyfluoroalkyl substances (PFAS) in surface water collected in Pensacola, FL [J]. Heliyon, 2022, 8(8): e10239. doi: 10.1016/j.heliyon.2022.e10239 [87] MUNOZ G, GIRAUDEL J, BOTTA F, et al. Spatial distribution and partitioning behavior of selected poly- and perfluoroalkyl substances in freshwater ecosystems: A French nationwide survey [J]. Science of the Total Environment, 2015, 517: 48-56. doi: 10.1016/j.scitotenv.2015.02.043 [88] GAO L J, LIU J L, BAO K, et al. Multicompartment occurrence and partitioning of alternative and legacy per- and polyfluoroalkyl substances in an impacted river in China [J]. Science of the Total Environment, 2020, 729: 138753. doi: 10.1016/j.scitotenv.2020.138753 [89] ZHOU Y Q, WANG T Y, JIANG Z Z, et al. Ecological effect and risk towards aquatic plants induced by perfluoroalkyl substances: Bridging natural to culturing flora [J]. Chemosphere, 2017, 167: 98-106. doi: 10.1016/j.chemosphere.2016.09.146 [90] DING J, HUA Z L, CHU K J. The effect of hydrodynamic forces of drying/wetting cycles on the release of soluble reactive phosphorus from sediment [J]. Environmental Pollution, 2019, 252: 992-1001. doi: 10.1016/j.envpol.2019.06.016 [91] LU Y, HUA Z L, CHU K J, et al. Distribution behavior and risk assessment of emerging perfluoroalkyl acids in multiple environmental media at Luoma Lake, East China [J]. Environmental Research, 2021, 194: 110733. doi: 10.1016/j.envres.2021.110733 [92] THACKRAY C P, SELIN N E, YOUNG C J. A global atmospheric chemistry model for the fate and transport of PFCAs and their precursors [J]. Environmental Science:Processes & Impacts, 2020, 22(2): 285-293. [93] ARMITAGE J, COUSINS I T, BUCK R C, et al. Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources [J]. Environmental Science & Technology, 2006, 40(22): 6969-6975. [94] BENGTSON NASH S. Perfluorinated compounds in the Antarctic region: Ocean circulation provides prolonged protection from distant sources [J]. Environmental Pollution, 2010, 158(9): 2985-2991. doi: 10.1016/j.envpol.2010.05.024 [95] 鞠晓东. 海洋环境中全氟有机污染物研究的若干进展 [J]. 海洋科学, 2010, 34(7): 93-99. JU X D. Progress in research on marine environmental pollution of perfluorinated chemicals [J]. Marine Sciences, 2010, 34(7): 93-99(in Chinese).
[96] LOHMANN R, BELKIN I M. Organic pollutants and ocean fronts across the Atlantic Ocean: A review [J]. Progress in Oceanography, 2014, 128: 172-184. doi: 10.1016/j.pocean.2014.08.013 [97] MCLACHLAN M S, HOLMSTROM K E, RETH M, et al. Riverine discharge of perfluorinated carboxylates from the European continent [J]. Environmental Science & Technology, 2007, 41(21): 7260-7265. [98] ZHENG H Y, WANG F, ZHAO Z, et al. Distribution profiles of per- and poly fluoroalkyl substances (PFASs) and their re-regulation by ocean currents in the East and South China Sea [J]. Marine Pollution Bulletin, 2017, 125(1-2): 481-486. doi: 10.1016/j.marpolbul.2017.08.009 [99] YAMASHITA N, KANNAN K, TANIYASU S, et al. A global survey of perfluorinated acids in oceans [J]. Marine Pollution Bulletin, 2005, 51(8-12): 658-668. doi: 10.1016/j.marpolbul.2005.04.026 [100] BUSCH J, AHRENS L, XIE Z Y, et al. Polyfluoroalkyl compounds in the east Greenland Arctic Ocean [J]. Journal of Environmental Monitoring, 2010, 12(6): 1242-1246. doi: 10.1039/c002242j [101] SCOTT B F, De SILVA A O, SPENCER C, et al. Perfluoroalkyl acids in Lake Superior water: Trends and sources [J]. Journal of Great Lakes Research, 2010, 36(2): 277-284. doi: 10.1016/j.jglr.2010.03.003 [102] CHEN H T, REINHARD M, YIN T R, et al. Multi-compartment distribution of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in an urban catchment system [J]. Water Research, 2019, 154: 227-237. doi: 10.1016/j.watres.2019.02.009 [103] SHAO M H, DING G H, ZHANG J, et al. Occurrence and distribution of perfluoroalkyl substances (PFASs) in surface water and bottom water of the Shuangtaizi Estuary, China [J]. Environmental Pollution, 2016, 216: 675-681. doi: 10.1016/j.envpol.2016.06.031 [104] DAUCHY X, BOITEUX V, COLIN A, et al. Poly- and perfluoroalkyl substances in runoff water and wastewater sampled at a firefighter training area [J]. Archives of Environmental Contamination and Toxicology, 2019, 76(2): 206-215. doi: 10.1007/s00244-018-0585-z [105] DAUCHY X, BOITEUX V, COLIN A, et al. Deep seepage of per- and polyfluoroalkyl substances through the soil of a firefighter training site and subsequent groundwater contamination [J]. Chemosphere, 2019, 214: 729-737. doi: 10.1016/j.chemosphere.2018.10.003 [106] XIAO F, SIMCIK M F, GULLIVER J S. Perfluoroalkyl acids in urban stormwater runoff: Influence of land use [J]. Water Research, 2012, 46(20): 6601-6608. doi: 10.1016/j.watres.2011.11.029 [107] BORTHAKUR A, WANG M, HE M, et al. Perfluoroalkyl acids on suspended particles: Significant transport pathways in surface runoff, surface waters, and subsurface soils [J]. Journal of Hazardous Materials, 2021, 417: 126159. doi: 10.1016/j.jhazmat.2021.126159 [108] CHANSON H, REUNGOAT D, SIMON B, et al. High-frequency turbulence and suspended sediment concentration measurements in the Garonne River tidal bore [J]. Estuarine, Coastal and Shelf Science, 2011, 95(2-3): 298-306. doi: 10.1016/j.ecss.2011.09.012 [109] ZHAO X L, XIA X H, ZHANG S W, et al. Spatial and vertical variations of perfluoroalkyl substances in sediments of the Haihe River, China [J]. Journal of Environmental Sciences, 2014, 26(8): 1557-1566. doi: 10.1016/j.jes.2014.05.023 [110] WANG S Q, CAI Y Z, MA L Y, et al. Perfluoroalkyl substances in water, sediment, and fish from a subtropical river of China: Environmental behaviors and potential risk [J]. Chemosphere, 2022, 288: 132513. doi: 10.1016/j.chemosphere.2021.132513 [111] NAKATA H, KANNAN K, NASU T, et al. Perfluorinated contaminants in sediments and aquatic organisms collected from shallow water and tidal flat areas of the Ariake Sea, Japan: Environmental fate of perfluorooctane sulfonate in aquatic ecosystems [J]. Environmental Science & Technology, 2006, 40(16): 4916-4921. [112] CHEN C E, YANG Y Y, ZHAO J L, et al. Legacy and alternative per- and polyfluoroalkyl substances (PFASs) in the West River and North River, south China: Occurrence, fate, spatio-temporal variations and potential sources [J]. Chemosphere, 2021, 283: 131301. doi: 10.1016/j.chemosphere.2021.131301 [113] HIGGINS C P, LUTHY R G. Sorption of perfluorinated surfactants on sediments [J]. Environmental Science & Technology, 2006, 40(23): 7251-7256. [114] LEE Y M, LEE J Y, KIM M K, et al. Concentration and distribution of per- and polyfluoroalkyl substances (PFAS) in the Asan Lake area of South Korea [J]. Journal of Hazardous Materials, 2020, 381: 120909. doi: 10.1016/j.jhazmat.2019.120909 [115] CAI W W, NAVARRO D A, DU J, et al. Increasing ionic strength and valency of cations enhance sorption through hydrophobic interactions of PFAS with soil surfaces [J]. Science of The Total Environment, 2022, 817: 152975. doi: 10.1016/j.scitotenv.2022.152975 [116] LABADIE P, CHEVREUIL M. Biogeochemical dynamics of perfluorinated alkyl acids and sulfonates in the River Seine (Paris, France) under contrasting hydrological conditions [J]. Environmental Pollution, 2011, 159(12): 3634-3639. doi: 10.1016/j.envpol.2011.07.028 [117] MUNOZ G, BUDZINSKI H, LABADIE P. Influence of environmental factors on the fate of legacy and emerging per- and polyfluoroalkyl substances along the salinity/turbidity gradient of a macrotidal estuary [J]. Environmental Science & Technology, 2017, 51(21): 12347-12357. [118] 罗雪梅, 杨志峰, 何孟常, 等. 土壤/沉积物中天然有机质对疏水性有机污染物的吸附作用 [J]. 土壤, 2005, 37(1): 25-31. doi: 10.3321/j.issn:0253-9829.2005.01.005 LUO X M, YANG Z F, HE M C, et al. Sorption of hydrophobic organic contaminants by natural organic matter in soils and sediments [J]. Soils, 2005, 37(1): 25-31(in Chinese). doi: 10.3321/j.issn:0253-9829.2005.01.005
[119] HUANG W L, YOUNG T M, SCHLAUTMAN M A, et al. A distributed reactivity model for sorption by soils and sediments. 9. general isotherm nonlinearity and applicability of the dual reactive domain model [J]. Environmental Science & Technology, 1997, 31(6): 1703-1710. [120] ZHANG R M, YAN W, JING C Y. Experimental and molecular dynamic simulation study of perfluorooctane sulfonate adsorption on soil and sediment components [J]. Journal of Environmental Sciences, 2015, 29: 131-138. doi: 10.1016/j.jes.2014.11.001 [121] PAN G, ZHOU Q, LUAN X, et al. Distribution of perfluorinated compounds in Lake Taihu (China): Impact to human health and water standards [J]. Science of the Total Environment, 2014, 487: 778-784. doi: 10.1016/j.scitotenv.2013.11.100 [122] ZHAO L X, BIAN J N, ZHANG Y H, et al. Comparison of the sorption behaviors and mechanisms of perfluorosulfonates and perfluorocarboxylic acids on three kinds of clay minerals [J]. Chemosphere, 2014, 114: 51-58. doi: 10.1016/j.chemosphere.2014.03.098 [123] GAO X D, CHOROVER J. Adsorption of perfluorooctanoic acid and perfluorooctanesulfonic acid to iron oxide surfaces as studied by flow-through ATR-FTIR spectroscopy [J]. Environmental Chemistry, 2012, 9(2): 148. doi: 10.1071/EN11119 [124] KASPRZYK-HORDERN B. Chemistry of alumina, reactions in aqueous solution and its application in water treatment [J]. Advances in Colloid and Interface Science, 2004, 110(1): 19-48. [125] JOHNSON R L, ANSCHUTZ A J, SMOLEN J M, et al. The adsorption of perfluorooctane sulfonate onto sand, clay, and iron oxide surfaces [J]. Journal of Chemical & Engineering Data, 2007, 52(4): 1165-1170. [126] MUKHOPADHYAY R, SARKAR B, PALANSOORIYA K N, et al. Natural and engineered clays and clay minerals for the removal of poly- and perfluoroalkyl substances from water: State-of-the-art and future perspectives [J]. Advances in Colloid and Interface Science, 2021, 297: 102537. doi: 10.1016/j.cis.2021.102537 [127] YOU C, JIA C X, PAN G. Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface [J]. Environmental Pollution, 2010, 158(5): 1343-1347. doi: 10.1016/j.envpol.2010.01.009 [128] LI Y S, OLIVER D P, KOOKANA R S. A critical analysis of published data to discern the role of soil and sediment properties in determining sorption of per and polyfluoroalkyl substances (PFASs) [J]. Science of the Total Environment, 2018, 628-629: 110-120. doi: 10.1016/j.scitotenv.2018.01.167 [129] WANG F, SHIH K. Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: Influence of solution pH and cations [J]. Water Research, 2011, 45(9): 2925-2930. doi: 10.1016/j.watres.2011.03.007 [130] PAN G, JIA C X, ZHAO D Y, et al. Effect of cationic and anionic surfactants on the sorption and desorption of perfluorooctane sulfonate (PFOS) on natural sediments [J]. Environmental Pollution, 2009, 157(1): 325-330. doi: 10.1016/j.envpol.2008.06.035 [131] 贾成霞, 潘纲, 陈灏. 全氟辛烷磺酸盐在天然水体沉积物中的吸附-解吸行为 [J]. 环境科学学报, 2006, 26(10): 1611-1617. doi: 10.3321/j.issn:0253-2468.2006.10.006 JIA C X, PAN G, CHEN H. Sorption and desorption behavior of perfluorooctane sulfonate on the natural sediments [J]. Acta Scientiae Circumstantiae, 2006, 26(10): 1611-1617(in Chinese). doi: 10.3321/j.issn:0253-2468.2006.10.006
[132] ZHOU Y Q, WANG T Y, LI Q F, et al. Spatial and vertical variations of perfluoroalkyl acids (PFAAs) in the Bohai and Yellow Seas: Bridging the gap between riverine sources and marine sinks [J]. Environmental Pollution, 2018, 238: 111-120. doi: 10.1016/j.envpol.2018.03.027 [133] AHRENS L, BARBER J L, XIE Z Y, et al. Longitudinal and latitudinal distribution of perfluoroalkyl compounds in the surface water of the Atlantic Ocean [J]. Environmental Science & Technology, 2009, 43(9): 3122-3127. [134] LOHMANN R, JURADO E, DIJKSTRA H A, et al. Vertical eddy diffusion as a key mechanism for removing perfluorooctanoic acid (PFOA) from the global surface oceans [J]. Environmental Pollution, 2013, 179: 88-94. doi: 10.1016/j.envpol.2013.04.006 [135] LUTZ M J, CALDEIRA K, DUNBAR R B, et al. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean [J]. Journal of Geophysical Research:Oceans, 2007, 112(C10): C10011. doi: 10.1029/2006JC003706 [136] ZHANG X M, LOHMANN R, SUNDERLAND E M. Poly- and perfluoroalkyl substances in seawater and plankton from the northwestern Atlantic margin [J]. Environmental Science & Technology, 2019, 53(21): 12348-12356. [137] WOODS J D, ONKEN R. Diurnal variation and primary production in the ocean preliminary results of a Lagrangian ensemble model [J]. Journal of Plankton Research, 1982, 4(3): 735-756. doi: 10.1093/plankt/4.3.735 [138] RUDELS B, JONES E P, ANDERSON L G, et al. On the Intermediate Depth Waters of the Arctic Ocean[M]//The Polar Oceans and Their Role in Shaping the Global Environment. 1994: 33-46. [139] ROGERS A D. Environmental change in the deep ocean [J]. Annual Review of Environment and Resources, 2015, 40: 1-38. doi: 10.1146/annurev-environ-102014-021415 [140] BRUMOVSKÝ M, KARÁSKOVÁ P, BORGHINI M, et al. Per- and polyfluoroalkyl substances in the Western Mediterranean Sea waters [J]. Chemosphere, 2016, 159: 308-316. doi: 10.1016/j.chemosphere.2016.06.015 [141] STORTINI A M, MARTELLINI T, DEL BUBBA M, et al. N-Alkanes, PAHs and surfactants in the sea surface microlayer and sea water samples of the Gerlache Inlet sea (Antarctica) [J]. Microchemical Journal, 2009, 92(1): 37-43. doi: 10.1016/j.microc.2008.11.005 [142] COSTANZA J, ARSHADI M, ABRIOLA L M, et al. Accumulation of PFOA and PFOS at the air-water interface [J]. Environmental Science & Technology Letters, 2019, 6(8): 487-491. [143] SHA B, JOHANSSON J H, BENSKIN J P, et al. Influence of water concentrations of perfluoroalkyl acids (PFAAs) on their size-resolved enrichment in Nascent sea spray aerosols [J]. Environmental Science & Technology, 2021, 55(14): 9489-9497. [144] CASAS G, MARTÍNEZ-VARELA A, ROSCALES J L, et al. Enrichment of perfluoroalkyl substances in the sea-surface microlayer and sea-spray aerosols in the Southern Ocean [J]. Environmental Pollution, 2020, 267: 115512. doi: 10.1016/j.envpol.2020.115512 [145] WANG S Q, LIN X, LI Q, et al. Particle size distribution, wet deposition and scavenging effect of per- and polyfluoroalkyl substances (PFASs) in the atmosphere from a subtropical city of China [J]. Science of the Total Environment, 2022, 823: 153528. doi: 10.1016/j.scitotenv.2022.153528 [146] CHEN M, WANG Q, SHAN G Q, et al. Occurrence, partitioning and bioaccumulation of emerging and legacy per- and polyfluoroalkyl substances in Taihu Lake, China [J]. Science of the Total Environment, 2018, 634: 251-259. doi: 10.1016/j.scitotenv.2018.03.301 [147] 温馨. 我国重点流域和重点地区饮用水中全氟化合物污染水平调查研究[D]. 北京: 中国疾病预防控制中心, 2020. WEN X. Investigation on the pollution level of perfluorinated compounds in drinking water in key river basins and regions in China[D]. Beijing: Chinese Center for Disease Control and Prevention, 2020(in Chinese).
[148] HAN T Z, GAO L Y, CHEN J H, et al. Spatiotemporal variations, sources and health risk assessment of perfluoroalkyl substances in a temperate bay adjacent to metropolis, North China [J]. Environmental Pollution, 2020, 265: 115011. doi: 10.1016/j.envpol.2020.115011 [149] CAI Y Z, WANG X H, WU Y L, et al. Temporal trends and transport of perfluoroalkyl substances (PFASs) in a subtropical estuary: Jiulong River Estuary, Fujian, China [J]. Science of the Total Environment, 2018, 639: 263-270. doi: 10.1016/j.scitotenv.2018.05.042 [150] FURDUI V I, CROZIER P W, REINER E J, et al. Trace level determination of perfluorinated compounds in water by direct injection [J]. Chemosphere, 2008, 73(1): S24-S30. doi: 10.1016/j.chemosphere.2007.07.085 [151] LIU W X, HE W, QIN N, et al. Temporal-spatial distributions and ecological risks of perfluoroalkyl acids (PFAAs) in the surface water from the fifth-largest freshwater lake in China (Lake Chaohu) [J]. Environmental Pollution, 2015, 200: 24-34. doi: 10.1016/j.envpol.2015.01.028 [152] CHEN S Q, YAN M, CHEN Y, et al. Perfluoroalkyl substances in the surface water and fishes in Chaohu Lake, China [J]. Environmental Science and Pollution Research, 2022, 29(50): 75907-75920. doi: 10.1007/s11356-022-20753-6 [153] GEWURTZ S B, BRADLEY L E, BACKUS S, et al. Perfluoroalkyl acids in great lakes precipitation and surface water (2006-2018) indicate response to phase-outs, regulatory action, and variability in fate and transport processes [J]. Environmental Science & Technology, 2019, 53(15): 8543-8552. [154] ZHAO Z, XIE Z Y, TANG J H, et al. Seasonal variations and spatial distributions of perfluoroalkyl substances in the rivers Elbe and lower Weser and the North Sea [J]. Chemosphere, 2015, 129: 118-125. doi: 10.1016/j.chemosphere.2014.03.050 [155] SHAFIQUE U, SCHULZE S, SLAWIK C, et al. Perfluoroalkyl acids in aqueous samples from Germany and Kenya [J]. Environmental Science and Pollution Research, 2017, 24(12): 11031-11043. doi: 10.1007/s11356-016-7076-4 [156] LI L, ZHAI Z H, LIU J G, et al. Estimating industrial and domestic environmental releases of perfluorooctanoic acid and its salts in China from 2004 to 2012 [J]. Chemosphere, 2015, 129: 100-109. doi: 10.1016/j.chemosphere.2014.11.049 [157] CHEN H R, PENG H, YANG M, et al. Detection, occurrence, and fate of fluorotelomer alcohols in municipal wastewater treatment plants [J]. Environmental Science & Technology, 2017, 51(16): 8953-8961. [158] YAO J Z, SHENG N, GUO Y, et al. Nontargeted identification and temporal trends of per- and polyfluoroalkyl substances in a fluorochemical industrial zone and adjacent Taihu Lake [J]. Environmental Science & Technology, 2022, 56(12): 7986-7996. [159] SHI B, WANG T Y, YANG H F, et al. Perfluoroalkyl acids in rapidly developing coastal areas of China and South Korea: Spatiotemporal variation and source apportionment [J]. Science of The Total Environment, 2021, 761: 143297. doi: 10.1016/j.scitotenv.2020.143297 [160] DU D, LU Y L, ZHOU Y Q, et al. Perfluoroalkyl acids (PFAAs) in water along the entire coastal line of China: Spatial distribution, mass loadings, and worldwide comparisons [J]. Environment International, 2022, 169: 107506. doi: 10.1016/j.envint.2022.107506 [161] MENG L Y, SONG B Y, ZHONG H F, et al. Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in the Bohai Sea and its inflow rivers [J]. Environment International, 2021, 156: 106735. doi: 10.1016/j.envint.2021.106735 [162] SHAN G Q, QIAN X, CHEN X, et al. Legacy and emerging per- and poly-fluoroalkyl substances in surface seawater from northwestern Pacific to Southern Ocean: Evidences of current and historical release [J]. Journal of Hazardous Materials, 2021, 411: 125049. doi: 10.1016/j.jhazmat.2021.125049 [163] SLADEN W J L, MENZIE C M, REICHEL W L. DDT residues in Adelie penguins and A crabeater seal from Antarctica [J]. Nature, 1966, 210(5037): 670-673. doi: 10.1038/210670a0 [164] JANE L ESPARTERO L, YAMADA M, FORD J, et al. Health-related toxicity of emerging per- and polyfluoroalkyl substances: Comparison to legacy PFOS and PFOA [J]. Environmental Research, 2022, 212: 113431. doi: 10.1016/j.envres.2022.113431 [165] ZHAO Z, TANG J H, XIE Z Y, et al. Perfluoroalkyl acids (PFAAs) in riverine and coastal sediments of Laizhou Bay, North China [J]. Science of the Total Environment, 2013, 447: 415-423. doi: 10.1016/j.scitotenv.2012.12.095