-
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是一类由2个或2个以上苯环以线状、角状或簇状排列组合而成的稠环化合物,具有致畸性、致癌性和致突变性. 它们是一类典型的持久性有机污染物,广泛分布于不同的环境介质中. PAHs的来源有自然来源和人为来源,在许多受人类活动影响的地区,PAHs的污染主要是人类活动的结果,包括化工燃料的不完全燃烧,石油化工厂、炼油厂、焦化厂等工业污染排放,垃圾焚烧,海上交通运输以及石油泄漏等.
PAHs的种类很多,目前对于PAHs的研究不再局限于母体多环芳烃(parent polycyclic aromatic hydrocarbons,P-PAHs),同时还包括各类毒性更强、更难降解的衍生物,包括烷基化多环芳烃(alkyl PAHs,A-PAHs)、卤代多环芳烃(halogenated PAHs,H-PAHs)、硝基多环芳烃(nitrated PAHs,N-PAHs)和杂环多环芳烃(heterocyclic PAHs). 一些PAHs的衍生物已被证实具有比P-PAHs更强的毒性且更难以被生物降解[1]. 因此研究PAHs及其衍生物的污染特征,对这一大类持久性有机污染物的风险管控及污染修复,具有重要的环境意义. 海洋被认为是各种来源有机污染物最终的汇[2]. 在人类活动和气候变化多重压力下,海洋中持久性污染物的生态风险呈持续增加趋势,长期积累有可能加快海洋生态系统的退化. 本文对海洋中P-PAHs及各类衍生物的污染特征和来源进行归纳总结,为海洋中PAHs的风险评价提供更全面的数据支撑.
海洋多环芳烃及其衍生物的污染特征和来源分析
Characteristics and source analysis of polycyclic aromatic hydrocarbons and their derivatives in marine environment
-
摘要: 随着经济的发展,人类生产活动产生的污染物不断增加,海洋成为所有污染物最终的“汇”. 多环芳烃因其种类繁多、毒性强、难降解、分布广泛而备受关注. 它们在海洋环境中被频繁检出,是海洋中常见的污染物. 本文对国内外海洋水体、沉积物及海洋生物体内母体多环芳烃、烷基多环芳烃、卤代多环芳烃、硝基多环芳烃和杂环多环芳烃的污染特征、来源及毒性进行归纳总结,并进行展望.Abstract: With the development of economy, the pollutants produced by human production activities continue to increase, and the ocean becomes the final "sink" of all pollutants. Polycyclic aromatic hydrocarbons (PAHs) have attracted much attention due to their variety, high toxicity, difficult to degradation and wide distribution. They are frequently detected in marine environment and are common pollutants in the ocean. In this review, the characteristics, sources and toxicity of parent PAHs, alkyl PAHs, halogenated PAHs, nitrated PAHs and heterocyclic PAHs in marine water, sediments and marine organisms at home and abroad were summarized, and the results were prospected.
-
Key words:
- polycyclic aromatic hydrocarbons /
- persistent toxic pollutants /
- marine /
- sediments.
-
表 1 海洋表层沉积物中P-PAHs的总浓度
Table 1. Total concentrations of P-PAHs in marine surface sediments
表 2 海洋表层沉积物中A-PAHs的总浓度
Table 2. Total concentrations of A-PAHs in marine surface sediments
表 3 海洋表层沉积物中H-PAHs的浓度水平
Table 3. Concentrations of H-PAHs in marine surface sediments
国家及地区
National and Location检测的H-PAHs数量
Number of H-PAHs analyzedH-PAHs总浓度/(pg·g−1)
Concentration of total H-PAHs参考文献
Reference中国珠江口 7 Cl-PAHs 600—25700 [49] 7 Br-PAHs 800—66300 中国广西茅尾海 18 Cl-PAHs 300—9600 [50] 中国黄海 20 Cl-PAHs 290—1130 [51] 11 Br-PAHs 6—248 斯里兰卡尼甘布 20 Cl-PAHs 320—1798 [51] 11 Br-PAHs 15—104 斯里兰卡康提 20 Cl-PAHs 552—2381 [51] 11 Br-PAHs 20—160 日本东京湾 20 Cl-PAHs 36—1210 [52] 美国萨吉诺河和萨吉诺湾 20 Cl-PAHs 49—2490 [52] 新贝德福德港 20 Cl-PAHs 1880 [52] -
[1] SCOTT J A, ROSS M, LEMIRE B C, et al. Embryotoxicity of retene in cotreatment with 2-aminoanthracene, a cytochrome P4501A inhibitor, in rainbow trout (Oncorhynchus mykiss) [J]. Environmental Toxicology and Chemistry, 2009, 28(6): 1304-1310. doi: 10.1897/08-461.1 [2] 姜岩, 杨颖, 张贤明. 典型多环芳烃生物降解及转化机制的研究进展 [J]. 石油学报(石油加工), 2014, 30(6): 1137-1150. JIANG Y, YANG Y, ZHANG X M. Review on the biodegradation and conversion mechanisms of typical polycyclic aromatic hydrocarbons [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2014, 30(6): 1137-1150(in Chinese).
[3] ZHAO J, TIAN W J, CHU M L, et al. Enhanced photodegradation of methyl and parent PAH over flower-sphere Ag/rGO/BiOBr composite: Performance, mechanism and pathway [J]. Chemosphere, 2022, 297: 134175. doi: 10.1016/j.chemosphere.2022.134175 [4] LIU F, LIU J L, CHEN Q Y, et al. Pollution characteristics and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the southern part of the Haihe River system in China [J]. Chinese Science Bulletin, 2013, 58(27): 3348-3356. doi: 10.1007/s11434-013-5677-6 [5] 张禹, 刁晓平, 黎平, 等. 东寨港表层海水中多环芳烃(PAHs)的分布特征及来源分析 [J]. 生态环境学报, 2016, 25(11): 1779-1785. doi: 10.16258/j.cnki.1674-5906.2016.11.007 ZHANG Y, DIAO X P, LI P, et al. Distribution and sources of polycyclic aromatic hydrocarbons(PAHs) in seawater from coastal areas of the Dongzhai Harbor [J]. Ecology and Environmental Sciences, 2016, 25(11): 1779-1785(in Chinese). doi: 10.16258/j.cnki.1674-5906.2016.11.007
[6] 王伟权, 张瑞杰, 余克服, 等. 广西廉州湾和三娘湾表层水体中多环芳烃的时空分布与来源解析 [J]. 热带地理, 2019, 39(3): 337-346. doi: 10.13284/j.cnki.rddl.003141 WANG W Q, ZHANG R J, YU K F, et al. Occurrence, distribution and source analysis of polycyclic aromatic hydrocarbons (PAHs) in the surface waters of the Lianzhou Bay and Sanniang Bay, Guangxi [J]. Tropical Geography, 2019, 39(3): 337-346(in Chinese). doi: 10.13284/j.cnki.rddl.003141
[7] 黎平, 刁晓平, 赵春风, 等. 洋浦湾表层海水中多环芳烃的分布特征及来源分析 [J]. 环境科学与技术, 2015, 38(1): 127-133. LI P, DIAO X P, ZHAO C F, et al. Distribution and sources of polycyclic aromatic hydrocarbons(PAHs) in surface seawater from coastal areas of the Yangpu Bay [J]. Environmental Science & Technology, 2015, 38(1): 127-133(in Chinese).
[8] LI J F, DONG H, ZHANG D H, et al. Sources and ecological risk assessment of PAHs in surface sediments from Bohai Sea and northern part of the Yellow Sea, China [J]. Marine Pollution Bulletin, 2015, 96(1-2): 485-490. doi: 10.1016/j.marpolbul.2015.05.002 [9] ZHANG J D, WANG Y S, CHENG H, et al. Distribution and sources of the polycyclic aromatic hydrocarbons in the sediments of the Pearl River Estuary, China [J]. Ecotoxicology, 2015, 24(7): 1643-1649. [10] WANG C L, ZOU X Q, GAO J H, et al. Pollution status of polycyclic aromatic hydrocarbons in surface sediments from the Yangtze River Estuary and its adjacent coastal zone [J]. Chemosphere, 2016, 162: 80-90. doi: 10.1016/j.chemosphere.2016.07.075 [11] ZHAO Z Y, ZHUANG Y X, GU J D. Abundance, composition and vertical distribution of polycyclic aromatic hydrocarbons in sediments of the Mai Po Inner Deep Bay of the Mai Po Inner Deep Bay of Hong Kong [J]. Ecotoxicology, 2012, 21(6): 1734-1742. doi: 10.1007/s10646-012-0951-y [12] YIM U H, HONG S H, SHIM W J. Distribution and characteristics of PAHs in sediments from the marine environment of Korea [J]. Chemosphere, 2007, 68(1): 85-92. doi: 10.1016/j.chemosphere.2006.12.032 [13] VIÑAS L, PÉREZ-FERNANDEZ B, BESADA V, et al. PAHs and trace metals in marine surficial sediments from the Porcupine Bank (NE Atlantic): A contribution to establishing background concentrations [J]. Science of the Total Environment, 2023, 856: 159189. doi: 10.1016/j.scitotenv.2022.159189 [14] 黄芳, 黄亮, 张国森. 东海表层沉积物中多环芳烃的分布特征及来源解析 [J]. 地球与环境, 2018, 46(1): 50-58. doi: 10.14050/j.cnki.1672-9250.2018.46.007 HUANG F, HUANG L, ZHANG G S. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments from the East China Sea [J]. Earth and Environment, 2018, 46(1): 50-58(in Chinese). doi: 10.14050/j.cnki.1672-9250.2018.46.007
[15] 何书海, 曹小聪, 李腾崖, 等. 三亚河表层沉积物中多环芳烃分布、来源解析及生态风险评价 [J]. 环境化学, 2019, 38(4): 967-970. HE S H, CAO X C, LI T Y, et al. Distribution, source and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Sanya River [J]. Environmental Chemistry, 2019, 38(4): 967-970(in Chinese).
[16] ROCHA M J, ROCHA E. Concentrations, sources and risks of PAHs in dissolved and suspended material particulate fractions from the Northwest Atlantic Coast of the Iberian Peninsula [J]. Marine Pollution Bulletin, 2021, 165: 112143. doi: 10.1016/j.marpolbul.2021.112143 [17] LIU J P, XU K H, LI A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea [J]. Geomorphology, 2007, 85(3-4): 208-224. doi: 10.1016/j.geomorph.2006.03.023 [18] RAJPUT P, SARIN M M, RENGARAJAN R, et al. Atmospheric polycyclic aromatic hydrocarbons (PAHs) from post-harvest biomass burning emissions in the Indo-Gangetic Plain: Isomer ratios and temporal trends [J]. Atmospheric Environment, 2011, 45(37): 6732-6740. doi: 10.1016/j.atmosenv.2011.08.018 [19] GUO Z, LIN T, HU L. Distribution, deposition flux and budget of polycyclic aromatic hydrocarbons in the Yangtze River estuarine-inner shelf of the East China Sea[R]. American Geophysical Union, 2016. [20] ZHANG C C, LI Y L, WANG C L, et al. Polycyclic aromatic hydrocarbons (PAHs) in marine organisms from two fishing grounds, South Yellow Sea, China: bioaccumulation and human health risk assessment [J]. Marine Pollution Bulletin, 2020, 153: 110995. doi: 10.1016/j.marpolbul.2020.110995 [21] LIU L Y, WANG J Z, WEI G L, et al. Polycyclic aromatic hydrocarbons (PAHs) in continental shelf sediment of China: Implications for anthropogenic influences on coastal marine environment [J]. Environmental Pollution, 2012, 167: 155-162. doi: 10.1016/j.envpol.2012.03.038 [22] HAWTHORNE S B, MILLER D J, KREITINGER J P. Measurement of total polycyclic aromatic hydrocarbon concentrations in sediments and toxic units used for estimating risk to benthic invertebrates at manufactured gas plant sites [J]. Environmental Toxicology and Chemistry, 2006, 25(1): 287-296. doi: 10.1897/05-111R.1 [23] OHURA T, MORITA M, MAKINO M, et al. Aryl hydrocarbon receptor-mediated effects of chlorinated polycyclic aromatic hydrocarbons [J]. Chemical Research in Toxicology, 2007, 20(9): 1237-1241. doi: 10.1021/tx700148b [24] KANG H J, LEE S Y, KWON J H. Physico-chemical properties and toxicity of alkylated polycyclic aromatic hydrocarbons [J]. Journal of Hazardous Materials, 2016, 312: 200-207. doi: 10.1016/j.jhazmat.2016.03.051 [25] ENVIRONMENT C C O M O T. Canadian soil quality guidelines for carcinogenic and other polycyclic aromatic hydrocarbons (PAHS): Environmental and human health effects: Scientific supporting document[M]. Canadian Council of Ministers of the Environment, 2008. [26] CORRÊA S M, ARBILLA G, SILVA C M D, et al. Determination of size-segregated polycyclic aromatic hydrocarbon and its nitro and alkyl analogs in emissions from diesel-biodiesel blends [J]. Fuel, 2021, 283: 118912. doi: 10.1016/j.fuel.2020.118912 [27] WANG D L, GROOT A, SEIDEL A, et al. The influence of alkyl substitution on the in vitro metabolism and mutagenicity of benzo[a]pyrene [J]. Chemico-Biological Interactions, 2022, 363: 110007. doi: 10.1016/j.cbi.2022.110007 [28] LIN Y X, DENG W, LI S Y, et al. Congener profiles, distribution, sources and ecological risk of parent and alkyl-PAHs in surface sediments of Southern Yellow Sea, China [J]. Science of the Total Environment, 2017, 580: 1309-1317. doi: 10.1016/j.scitotenv.2016.12.094 [29] DENG W, LI X G, LI S Y, et al. Source apportionment of polycyclic aromatic hydrocarbons in surface sediment of mud areas in the East China Sea using diagnostic ratios and factor analysis [J]. Marine Pollution Bulletin, 2013, 70(1-2): 266-273. doi: 10.1016/j.marpolbul.2013.02.032 [30] DOSUNMU M I, OYO-ITA I O, OYO-ITA O E. Risk assessment of human exposure to polycyclic aromatic hydrocarbons via shrimp (Macrobrachium felicinum) consumption along the Imo River catchments, SE Nigeria [J]. Environmental Geochemistry and Health, 2016, 38(6): 1333-1345. doi: 10.1007/s10653-016-9799-z [31] CARDOSO F D, DAUNER A L L, MARTINS C C. A critical and comparative appraisal of polycyclic aromatic hydrocarbons in sediments and suspended particulate material from a large South American subtropical estuary [J]. Environmental Pollution, 2016, 214: 219-229. doi: 10.1016/j.envpol.2016.04.011 [32] RINAWATI, KOIKE T, KOIKE H, et al. Distribution, source identification, and historical trends of organic micropollutants in coastal sediment in Jakarta Bay, Indonesia [J]. Journal of Hazardous Materials, 2012, 217-218: 208-216. doi: 10.1016/j.jhazmat.2012.03.023 [33] YUAN K, WANG X W, LIN L, et al. Characterizing the parent and alkyl polycyclic aromatic hydrocarbons in the Pearl River Estuary, Daya Bay and northern South China Sea: Influence of riverine input [J]. Environmental Pollution, 2015, 199: 66-72. doi: 10.1016/j.envpol.2015.01.017 [34] ZHANG P, SONG J M, LIU Z G, et al. PCBs and its coupling with eco-environments in Southern Yellow Sea surface sediments [J]. Marine Pollution Bulletin, 2007, 54(8): 1105-1115. doi: 10.1016/j.marpolbul.2007.05.005 [35] MEI G M, ZHANG X J, GU J, et al. Assessment of heavy metals, polycyclic aromatic hydrocarbons, and perfluorinated alkyl substances in two marine crustaceans (Oratosquilla oratoria and Portunus trituberculatus) in the Zhoushan fishing ground of China East Sea [J]. Journal of Ocean University of China, 2021, 20(6): 1587-1596. doi: 10.1007/s11802-021-4884-z [36] SAHA M H, TOGO A, MIZUKAWA K, et al. Sources of sedimentary PAHs in tropical Asian waters: differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance [J]. Marine Pollution Bulletin, 2009, 58(2): 189-200. doi: 10.1016/j.marpolbul.2008.04.049 [37] QIAN Y H, YUAN K Y, HONG X P, et al. Contamination characteristics of alkyl polycyclic aromatic hydrocarbons in dust and topsoil collected from Huaibei Coalfield, China[J]. Environmental Geochemistry and Health, 2022,doi: 10.1007/s10653-022-01365-y. [38] CASAL C S, ARBILLA G, CORRÊA S M. Alkyl polycyclic aromatic hydrocarbons emissions in diesel/biodiesel exhaust [J]. Atmospheric Environment, 2014, 96: 107-116. doi: 10.1016/j.atmosenv.2014.07.028 [39] KAHKASHAN S, WANG X H, YA M L, et al. Evaluation of marine sediment contamination by polycyclic aromatic hydrocarbons along the Karachi coast, Pakistan, 11 years after the Tasman Spirit oil spill [J]. Chemosphere, 2019, 233: 652-659. doi: 10.1016/j.chemosphere.2019.05.217 [40] ALDARONDO-TORRES J X, SAMARA F, MANSILLA-RIVERA I, et al. Trace metals, PAHs, and PCBs in sediments from the Jobos Bay area in Puerto Rico [J]. Marine Pollution Bulletin, 2010, 60(8): 1350-1358. doi: 10.1016/j.marpolbul.2010.06.006 [41] NILSSON U L, OESTMAN C E. Chlorinated polycyclic aromatic hydrocarbons: method of analysis and their occurrence in urban air [J]. Environmental Science & Technology, 1993, 27(9): 1826-1831. [42] SUN J L, ZENG H, NI H G. Halogenated polycyclic aromatic hydrocarbons in the environment [J]. Chemosphere, 2013, 90(6): 1751-1759. doi: 10.1016/j.chemosphere.2012.10.094 [43] HORII Y, OK G, OHURA T, et al. Occurrence and profiles of chlorinated and brominated polycyclic aromatic hydrocarbons in waste incinerators [J]. Environmental Science & Technology, 2008, 42(6): 1904-1909. [44] OHURA T, FUJIMA S, AMAGAI T, et al. Chlorinated polycyclic aromatic hydrocarbons in the atmosphere: seasonal levels, gas-particle partitioning, and origin [J]. Environmental Science & Technology, 2008, 42(9): 3296-3302. [45] HUANG C, XU X, WANG D H, et al. The aryl hydrocarbon receptor (AhR) activity and DNA-damaging effects of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) [J]. Chemosphere, 2018, 211: 640-647. doi: 10.1016/j.chemosphere.2018.07.087 [46] OHURA T, SAWADA K I, AMAGAI T, et al. Discovery of novel halogenated polycyclic aromatic hydrocarbons in urban particulate matters: occurrence, photostability, and AhR activity [J]. Environmental Science & Technology, 2009, 43(7): 2269-2275. [47] BLANKENSHIP A L, KANNAN K, VILLALOBOS S A, et al. Relative potencies of individual polychlorinated naphthalenes and halowax mixtures to induce Ah receptor-mediated responses [J]. Environmental Science & Technology, 2000, 34(15): 3153-3158. [48] LI X Y, MA M, ZHAO B L, et al. Chlorinated polycyclic aromatic hydrocarbons induce immunosuppression in THP-1 macrophages characterized by disrupted amino acid metabolism [J]. Environmental Science & Technology, 2022, 56(22): 16012-16023. [49] YUAN K, QING Q, WANG Y R, et al. Characteristics of chlorinated and brominated polycyclic aromatic hydrocarbons in the Pearl River Estuary [J]. Science of the Total Environment, 2020, 739: 139774. doi: 10.1016/j.scitotenv.2020.139774 [50] WANG Y J, LIAO R Q, LIU W L, et al. Chlorinated polycyclic aromatic hydrocarbons in surface sediment from Maowei Sea, Guangxi, China: occurrence, distribution, and source apportionment [J]. Environmental Science and Pollution Research, 2017, 24(19): 16241-16252. doi: 10.1007/s11356-017-9193-0 [51] OHURA T, SAKAKIBARA H, WATANABE I, et al. Spatial and vertical distributions of sedimentary halogenated polycyclic aromatic hydrocarbons in moderately polluted areas of Asia [J]. Environmental Pollution, 2015, 196: 331-340. doi: 10.1016/j.envpol.2014.10.028 [52] HORII Y, OHURA T, YAMASHITA N, et al. Chlorinated polycyclic aromatic hydrocarbons in sediments from industrial areas in Japan and the United States [J]. Archives of Environmental Contamination and Toxicology, 2009, 57(4): 651-660. doi: 10.1007/s00244-009-9372-1 [53] SHARIF M N, FARAHAT A, HAIDER H, et al. Risk-based framework for optimizing residual chlorine in large water distribution systems [J]. Environmental Monitoring and Assessment, 2017, 189(7): 307. doi: 10.1007/s10661-017-5989-0 [54] LIU Y, BECKINGHAM B, RUEGNER H, et al. Comparison of sedimentary PAHs in the rivers of Ammer (Germany) and Liangtan (China): differences between early- and newly-industrialized countries [J]. Environmental Science & Technology, 2013, 47(2): 701-709. [55] WANG Q, MIYAKE Y, AMAGAI T, et al. Halogenated polycyclic aromatic hydrocarbons in soil and river sediment from E-waste recycling sites in Vietnam [J]. Journal of Water and Environment Technology, 2016, 14(3): 166-176. doi: 10.2965/jwet.15-053 [56] KAMIYA Y, IKEMORI F, OHURA T. Optimisation of pre-treatment and ionisation for GC/MS analysis for the determination of chlorinated PAHs in atmospheric particulate samples [J]. International Journal of Environmental Analytical Chemistry, 2015, 95(12): 1157-1168. doi: 10.1080/03067319.2015.1048439 [57] DIMASHKI M, HARRAD S, HARRISON R M. Measurements of nitro-PAH in the atmospheres of two cities [J]. Atmospheric Environment, 2000, 34(15): 2459-2469. doi: 10.1016/S1352-2310(99)00417-3 [58] YU Z G, WANG H, ZHANG X, et al. Long-term environmental surveillance of PM2.5-bound polycyclic aromatic hydrocarbons in Jinan, China (2014-2020): Health risk assessment [J]. Journal of Hazardous Materials, 2022, 425: 127766. doi: 10.1016/j.jhazmat.2021.127766 [59] TAGA R N, TANG N, HATTORI T, et al. Direct-acting mutagenicity of extracts of coal burning-derived particulates and contribution of nitropolycyclic aromatic hydrocarbons [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2005, 581(1-2): 91-95. doi: 10.1016/j.mrgentox.2004.11.013 [60] IDOWU O, SEMPLE K T, RAMADASS K, et al. Beyond the obvious: Environmental health implications of polar polycyclic aromatic hydrocarbons [J]. Environment International, 2019, 123: 543-557. doi: 10.1016/j.envint.2018.12.051 [61] BAI X R, WEI J, REN Y Q, et al. Pollution characteristics and health risk assessment of polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons during heating season in Beijing[J]. Journal of Environmental Sciences, 2023,123: 169-182. [62] TANG N, HATTORI T, TAGA R N, et al. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in urban air particulates and their relationship to emission sources in the Pan-Japan Sea countries [J]. Atmospheric Environment, 2005, 39(32): 5817-5826. doi: 10.1016/j.atmosenv.2005.06.018 [63] BAMFORD H A, BAKER J E. Nitro-polycyclic aromatic hydrocarbon concentrations and sources in urban and suburban atmospheres of the Mid-Atlantic region [J]. Atmospheric Environment, 2003, 37(15): 2077-2091. doi: 10.1016/S1352-2310(03)00102-X [64] VUONG Q T, SON J M, THANG P Q, et al. Application of gas chromatographic retention times to determine physicochemical properties of nitrated, oxygenated, and parent polycyclic aromatic hydrocarbons [J]. Environmental Pollution, 2022, 294: 118644. doi: 10.1016/j.envpol.2021.118644 [65] YAFFE D, COHEN Y, AREY J, et al. Multimedia analysis of PAHs and nitro-PAH daughter products in the Los Angeles basin [J]. Risk Analysis, 2001, 21(2): 275-294. doi: 10.1111/0272-4332.212111 [66] KIELHORN J, MANGELSDORF I. Selected nitro- and nitro-oxy-polycyclic aromatic hydrocarbons[M]. Geneva: World Health Organization, 2003 [67] VICENTE E D, VICENTE A M, MUSA BANDOWE B A, et al. Particulate phase emission of parent polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, azaarenes and nitrated PAHs) from manually and automatically fired combustion appliances [J]. Air Quality, Atmosphere & Health, 2016, 9(6): 653-668. [68] OZAKI N, TAKEMOTO N, KINDAICHI T. Nitro-PAHs and PAHs in atmospheric particulate matters and sea sediments in Hiroshima Bay area, Japan [J]. Water, Air, and Soil Pollution, 2010, 207(1): 263-271. [69] SATO T, KATO K, OSE Y, et al. Nitroarenes in Suimon River sediment [J]. Mutation Research/Genetic Toxicology, 1985, 157(2-3): 135-143. doi: 10.1016/0165-1218(85)90108-9 [70] FERNANDEZ P, GRIFOLL M, SOLANAS A M, et al. Bioassay-directed chemical analysis of genotoxic components in coastal sediments [J]. Environmental Science & Technology, 1992, 26(4): 817-829. [71] VAREL U L V, MACHALA M, CIGANEK M, et al. Polar compounds dominate in vitro effects of sediment extracts [J]. Environmental Science & Technology, 2011, 45(6): 2384-2390. [72] HUANG B, LIU M, BI X H, et al. Phase distribution, sources and risk assessment of PAHs, NPAHs and OPAHs in a rural site of Pearl River Delta region, China [J]. Atmospheric Pollution Research, 2014, 5(2): 210-218. doi: 10.5094/APR.2014.026 [73] QIAO M, QI W X, LIU H J, et al. Oxygenated, nitrated, methyl and parent polycyclic aromatic hydrocarbons in rivers of Haihe River System, China: Occurrence, possible formation, and source and fate in a water-shortage area [J]. Science of the Total Environment, 2014, 481: 178-185. doi: 10.1016/j.scitotenv.2014.02.050 [74] MANABE Y, KINOUCHI T, WAKISAKA K, et al. Mutagenic 1-nitropyrene in wastewater from oil-water separating tanks of gasoline stations and in used crankcase oil [J]. Environmental Mutagenesis, 1984, 6(5): 669-681. doi: 10.1002/em.2860060505 [75] MURAKAMI M, YAMADA J, KUMATA H, et al. Sorptive behavior of nitro-PAHs in street runoff and their potential as indicators of diesel vehicle exhaust particles [J]. Environmental Science & Technology, 2008, 42(4): 1144-1150. [76] UNO S, TANAKA H, MIKI S, et al. Bioaccumulation of nitroarenes in bivalves at Osaka Bay, Japan [J]. Marine Pollution Bulletin, 2011, 63(5-12): 477-481. doi: 10.1016/j.marpolbul.2011.02.044 [77] HUANG L, CHERNYAK S M, BATTERMAN S A. PAHs, nitro-PAHs, hopanes, and steranes in lake trout from Lake Michigan [J]. Environmental Toxicology and Chemistry, 2014, 33(8): 1792-1801. doi: 10.1002/etc.2620 [78] STEINBERG G, SCHUSTER M, GURR S J, et al. A lipophilic cation protects crops against fungal pathogens by multiple modes of action [J]. Nature Communications, 2020, 11: 1608. doi: 10.1038/s41467-020-14949-y [79] BRORSTRöM-LUNDéN E, REMBERGER M, KAJ L, et al. Results from the Swedish National Screening Programme 2008. Screening of unintentionally produced organic contaminants [Z]. IVL Svenska Miljöinstitutet. 2010 [80] BACOLOD E T, UNO S, TANAKA H, et al. Micronuclei and other nuclear abnormalities induction in erythrocytes of marbled flounder, Pleuronectes yokohamae, exposed to dietary nitrated polycyclic aromatic hydrocarbons [J]. Japanese Journal of Environmental Toxicology, 2013, 16(2): 79-89. [81] BACOLOD E T, UNO S, TANAKA H, et al. Bioconcentration of waterborne nitroarenes in marbled flounder Pleuronectes yokohamae [J]. Japanese Journal of Environmental Toxicology, 2013, 16(2): 91-105. [82] ANYANWU I N, SEMPLE K T. Fate and behaviour of nitrogen-containing polycyclic aromatic hydrocarbons in soil [J]. Environmental Technology & Innovation, 2015, 3: 108-120. [83] MACHADO M E, NASCIMENTO M M, BOMFIM BAHIA P V, et al. Analytical advances and challenges for the determination of heterocyclic aromatic compounds (NSO-HET) in sediment: A review [J]. TrAC Trends in Analytical Chemistry, 2022, 150: 116586. doi: 10.1016/j.trac.2022.116586 [84] BU Q W, ZHANG Z H, LU S, et al. Vertical distribution and environmental significance of PAHs in soil profiles in Beijing, China [J]. Environmental Geochemistry and Health, 2009, 31(1): 119-131. doi: 10.1007/s10653-008-9171-z [85] EPA U. Estimation programs interface suite™ for Microsoft® windows, v 4.11 [M]. Washington, DC: United States Environmental Protection Agency, 2012. [86] BRINKMANN M, MALETZ S, KRAUSS M, et al. Heterocyclic aromatic hydrocarbons show estrogenic activity upon metabolization in a recombinant transactivation assay [J]. Environmental Science & Technology, 2014, 48(10): 5892-5901. [87] SHINOHARA R, KIDO A, OKAMOTO Y, et al. Determination of trace azaarenes in water by gas chromatography and gas chromatography—mass spectrometry [J]. Journal of Chromatography A, 1983, 256: 81-91. doi: 10.1016/S0021-9673(01)88214-5 [88] KOSJEK T, ANDERSEN H R, KOMPARE B, et al. Fate of carbamazepine during water treatment [J]. Environmental Science & Technology, 2009, 43(16): 6256-6261. [89] LÓPEZ-SERNA R, PETROVIĆ M, BARCELÓ D. Occurrence and distribution of multi-class pharmaceuticals and their active metabolites and transformation products in the Ebro River basin (NE Spain) [J]. Science of the Total Environment, 2012, 440: 280-289. doi: 10.1016/j.scitotenv.2012.06.027