-
近年来我国有机废水排放量仍居高位,据统计2021年我国有机废水排放量突破589. 64亿m3,对水体环境和水生态平衡均造成巨大威胁. 不同行业的有机废水中主要成分为各自工艺流程带入的特征有机物,如农药、医药中间体、抗生素、高分子染料、芳香族化合物以及含硫、氮等有机化合物,具有COD高、生物毒害效应、处理难度大、生物难降解等特点,未经有效处理后排放会造成水体富营养化等环境问题[1-5]. 因此,有机废水的高效治理是从源头上遏制水体富营养化、改善水质和饮水安全的必要途径. 此外,在碳中和碳达峰的目标要求下,对有机废水的高效降解和深度治理符合我国双碳目标的发展路径[6-8].
在有机废水处理方法方面,典型水处理工艺(如吸附、膜过滤等)仅能实现水中有机污染物转移,易造成产生固废等二次污染,不能实现有机成分的深度降解. 高级氧化技术(advanced oxidation processes, AOPs)自1987年被Glaze[9]提出以来各种高级氧化方式不断得到开发,而以过硫酸盐(persulfate, PS)为氧化剂的高级氧化技术近年来引起了更多关注,其特点在于可通过多种活化方式产生活性氧物种(reactive oxygen species, ROS),进而无选择性地将有机污染物降解并矿化为CO2、无机盐和水等产物,具有高效、易储运等优点[10-15]. 通过活化过硫酸盐产生的ROS主要包括硫酸根自由基(
$ {\text{SO}}_{\text{4}}^{\text{·–}} $ )(2.5—3.1 eV, 30—40 μs)、羟基自由基(·OH)(1.8—2.7 eV, 20 ns)、超氧自由基$ {\text{O}}_{\text{2}}^{\text{·–}} $ (2.4 eV)和单态氧1O2(1.52 eV)等,在较宽的pH值范围(2—8)均可有效降解和矿化各类有机污染物[16-18].利用外加能量如紫外光照[19-20]、热活化[21-22]、电化学[23-25]、超声波[26-28]、微波[29]等方式均能有效活化过硫酸盐. 而通过引入外加催化剂的非均相活化方法无需外加能量即可活化过硫酸盐,具有操作方便、成本低、反应条件温和、
$ {\text{SO}}_{\text{4}}^{\text{·–}} $ 生成速率高等优点,其中过渡金属催化剂(如Co,Fe,Mn等)由于来源广泛和可变价态是优异的过硫酸盐催化活化材料[30-33]. 在众多过渡金属中,锰基催化剂因为其高催化活性被广泛应用于环境催化方面[34-35],在催化臭氧分解[36]、电化学氧化[37-38]、光催化[39]、VOCs热催化氧化[40-42]以及过硫酸盐活化方面均有大量应用和报道. 近年来,国内外众多学者对锰基催化剂用于过硫酸盐活化进行了广泛而深入的研究,已成为高级氧化领域的热点研究方向. 以“锰”、“过硫酸盐”为关键词,对Scopus数据库近二十年相关论文发表进行了检索(见图1),可以看出锰基催化剂活化过硫酸盐的研究热度持续上升,其中2021年共计发表文章近400篇. 过氧一硫酸盐(peroxymonosulfate,PMS)和过氧二硫酸盐(peroxydisulfate,PDS)由于结构的不同,在活化途径和非自由基反应方面存在一定的差异. PMS比PDS更活跃[43],具有更高的溶解度,且PMS具有较短的键长(0.146 nm)和更高的键解离能(377 kJ mol−1)[44]. 因此,近几年锰基催化剂活化过氧PMS方面的文章发表数量高于PDS,约占论文发表总数的70%.本文综述了近年来锰基催化材料在催化活化过硫酸盐降解有机废水领域的研究进展,系统总结了零价锰、单一锰氧化物、复合锰氧化物、特殊晶型锰氧化物以及负载型锰氧化物的相关报道,为针对性地设计高活性锰基过硫酸盐活化材料提供思路和借鉴,并对其存在问题和发展趋势进行了初步展望.
锰基催化剂用于活化过硫酸盐降解有机废水的研究进展
Research progress on manganese based catalysts for activating persulfate degradation of organic wastewater
-
摘要: 基于过硫酸盐的高级氧化技术具有便于储运、活化方式多、pH适应范围广等优点,近年来成为有机废水处理领域的热点研究方向. 该技术可通过物理、化学及多种耦合途径活化过硫酸盐产生多种自由基和单线态氧进而实现对水中有机污染物的高效降解和矿化. 在众多过硫酸盐的活化方式中,非均相催化活化途径具有高效的活化效果,且无需引入额外能量、氧化剂投加量少. 过渡金属催化剂是优异的过硫酸盐催化活化材料,其中锰基催化剂因其自然存量高、价态和晶型丰富等优势,已被广泛用于活化过硫酸盐降解各类有机物. 本文综述了不同锰基催化剂在催化活化过硫酸盐处理有机废水方面的研究进展,分别介绍零价锰、单一锰氧化合物、复合锰氧化合物、特殊晶型锰氧化物及负载型锰氧化物的国内外研究现状,并对锰基催化剂在活化过硫酸盐方面存在的问题和应用前景进行了展望.Abstract: Persulfate (PS) activation based advanced oxidation process is featuring of easy storage and transportation, various activation approach and wide pH value range, which has been a hot issue on organic wastewater treatment in recent years. PS can be activated by physical, chemical and hybrid technologies, thus generating various reactive oxidation species (ROS) and singlet oxygen to efficiently degrade and mineralize organic compounds. Among various PS activation methods, heterogeneous catalytic activation has the advantages of high catalytic activity, none energy consumption and less oxidant dosage. Transition metal catalysts are excellent PS activation candidates. Among them, manganese (Mn)- based catalysts are characterized by abundant natural reserves, variable valence states and multiple crystal forms, which have been widely applied in PS activation for degradation of various organic pollutants. Herein, recent progress on different Mn-based catalysts for PS activation on degradation of organic wastewater were reviewed. Research on zero valence Mn, single manganese oxides, composite manganese oxides, special crystalline manganese oxides and supporting material were discussed respectively. Finally, the remaining challenges and future direction on Mn based catalysts for PS activation were prospected.
-
Key words:
- advanced oxidation /
- manganese based catalyst /
- persulfate /
- organic wastewater /
- activation /
- degradation.
-
图 5 LaMnO3和Cu-LaMnO3钙钛矿的循环伏安曲线(a),La 3d、Mn 3s、Mn 2p和Cu 2p的XPS谱图(b),SMX在Cu-LaMnO3/PMS体系中的降解机理(c)[95]
Figure 5. Cyclic voltammetry curve of LaMnO3 and Cu-LaMnO3 (a), XPS spectra of La 3d, Mn 3s, Mn 2p and Cu 2p in LaMnO3 and Cu-LaMnO3 (b) and degradation mechanism of SMX in Cu-LaMnO3/PMS system (c)[95]
图 6 CMO(a),HNT(b),40-CMO/HNT(c)的TEM图像,CMO和40-CMO/HNT的XPS光谱(d),40-CMO/HNT活化PMS产生自由基的机理示意图(e)[99]
Figure 6. TEM images of bare CMO (a), HNT (b) and 40-CMO/HNT (c),XPS spectra of survey for bare CMO and 40-CMO/HNT (d), Schematic illustration of radical generation mechanism through PMS activated by 40-CMO/HNT (e)[99]
表 1 锰基催化剂分类及特性
Table 1. Classification and characteristics of manganese based catalysts
类别
Classification催化活性组分
Active catalytic components制备方法
Preparation method反应条件
Reaction condition目标污染物
Target contaminants主要ROS
Major
reactive
oxygen
species污染物
去除率
Pollutants
removal
efficiency特点
Features参考文献
Reference零价锰 NZVIM 一步液相还原法 Ccata=75.0 mg·L−1、
CPMS=1.0 mmol·L−1
CSMT=5.0 mg·L−1、
MFe/MMn=2:1、1:1、
pH0=3.0、
T=30±0.5 °C、
t=60 min磺胺甲基嘧啶
(sulfamethazine,
SMT)·OH >95% 粒径小、活性位点多、吸附和还原能力强 [45] nZVMn 化学还原法 CMn0=1.0 g·L−1、
CPDS=50 mg·L−1、
pH0=2.0
CCIP=10 mg·L−1、
t=80 min环丙沙星(ciprofloxacin,CIP) $ {\text{SO}}_{\text{4}}^{\text{·–}} $
·OH95% [46] 单一锰
氧化物α-MnO2 水热法 Ccata=0.05 g·L−1、
COI=5 mg·L−1
CPMS=25 μmol·L−1、
pH0=7.0、T=25±2 °C橙I
(OrangeI,OI)$ {\text{SO}}_{\text{4}}^{\text{·–}} $
·OH、
${\text{O}}_{2}^{\cdot –} $
1O286.2% 较好的活性和持久性 [47] MnOOH 水热法 Ccata=0.4 g·L−1、
CPMS=2.5 mmol·L−1、
pH0=3—9、
CPCA=0.5 mmol·L−1、
T=25 °C、t=180 min对氯苯胺
(p-chloroaniline,
PCA)1O2 100% [48] α-MnO2 水热法 Ccata=100 mg·L−1、
CPMS=100 mg·L−1、
t=25 h、
CDIN=2.09 μmol、
pH0=3.9、T=25 °C二唑(diniconazole,
DIN)$ {\text{SO}}_{\text{4}}^{\text{·–}} $
·OH
89.3% [49] 复合锰
氧化物CuMnFe LDHs 水热法 Ccata=0.6 g·L−1、
CPMS=0.4 mmol·L−1
CBPA=20 mg·L−1、
t=15 min、光照双酚A
(bisphenol
A,BPA)h+
$ {\text{O}}_{\text{2}}^{\text{·–}} $ 93.5% 高活性、耐水性和稳定性 [50] MnFeO 水热法 Ccata=0.1 g·L−1、
CPMS=0.4 mmol·L−1、
t=60 min
CBPA=40 μmol·L−1、
pH0=6.5±0.1、
T=(25±0.5) °C、双酚A
(bisphenol
A,BPA)$ {\text{SO}}_{\text{4}}^{\text{·–}} $
·OH
1O2>96% [51] Fe-Mn 溶胶-凝胶法 Ccata=0.5 g·L−1、
CPMS=2.0 g·L−1
CPhenol=30 mg·L−1、
pH0=5、T=25 ℃、
t=90 min苯酚
(Phenol,
PhOH)·OH 90.59% [12] Mn3O4 /ZIF-8 溶剂热法 Ccata=0.4 g·L−1、
CPMS=0.3 g·L−1
CRhB=10 mg·L−1、
T=23 °C罗丹明B
(rhodamine
B,RhB)·OH 96% [52] MnO2/
MnFe2O4水热法 Ccata=0.2 g·L−1、
CPMS=0.4 g·L−1、
pH0=5.4、
CRhB=0.01 g·L−1、
T=30 °C罗丹明B
(rhodamine
B,RhB)$ {\text{SO}}_{\text{4}}^{\text{·–}} $ 99% [53] (LiNi0.5Co0.2Mn0.3O2, NCM) 热合成 Ccata=0.5 g·L−1、
CPMS=1 mmol·L−1、
CRhB=20 mg·L−1、
pH0=3、T=25 °C、
t=20 min罗丹明B
(rhodamine
B,RhB)1O2 100% [54] α-MnO2/
MnFe2O4水热法 Ccata=0.2 g·L−1、
CPMS=1 mmol·L−1
CNOF=20 mg·L−1、
pH0=7、T=25 °C、
t=20 min氟沙星(Norfloxacin,
NOF)$ {\text{SO}}_{\text{4}}^{\text{·–}} $
·OH、$ {\text{O}}_{\text{2}}^{\text{·–}} $ 100% [55] 特殊晶型
锰氧化物La0.5Sr0.5Co0.8Mn0.2O3-δ 煅烧法 Ccata=0.1 g·L−1、
CPMS=0.12 g·L−1
CTBBPA0=20 mg·L−1、
pH0=6.7、T=25 °C、
t=40 min四溴双酚A
(tetrrabromobisphenol
A ,TBBPA)$ {\text{SO}}_{\text{4}}^{\text{·–}} $
>95% 低成本、高热稳定性、高孔隙度、优良的导电性 [56] LaMnO3 溶胶-凝胶法 Ccata=40 mg·L−1、
CPMS=0.2 g·L−1
COFX=10 mg·L−1、
pH0=5.0、t=15 min氧氟沙星(ofloxacin,
OFX)1O2 96.3% [57] MFO-LIBs 溶胶-凝胶法 Ccata=0.3 g·L−1、
CPMS=0.1 g·L−1
CBPA=20 mg·L−1、
pH0=6.2、T=25 °C、
t=15 min双酚A
(bisphenol
A,BPA)$ {\text{SO}}_{\text{4}}^{\text{·–}} $
·OH、$ {\text{O}}_{\text{2}}^{\text{·–}} $
1O2100% [58] 负载型
锰氧化物MnFe2O4/
(CM-600)煅烧法 Ccata=0.4 g·L−1、
nAO7/nPMS=1:15
CAO7=50 g·L−1、
pH0=6.5±0.05、
T=25±0.5 °C酸性橙7 (Orange7,
AO7)$ {\text{SO}}_{\text{4}}^{\text{·–}} $ 99.0% 热稳定性、价格低廉、比表面积大 [59] MMBC 共热解 Ccata=0.2 g·L−1、
CPDS=8 mmol·L−1
CTC=20 mg·L−1、
pH0=3、t=180 min四环素(tetracycline,
TC)·OH 93% [60] 负载型
锰氧化物MCC 浸渍法 Ccata=1.0 g·L−1、
CPMS=1.0 mmol·L−1、
T=25 °C
CBPA=20 mg·L−1、
pH0=6.5±0.2、
t=120 min双酚A
(bisphenol
A,BPA)1O2 90% 热稳定性、价格低廉、比表面积大 [61] α-MnO2/Pal 水热法 Ccata=0.1 g·L−1、
CPMS=0.1 g·L−1
CRhB=20 mg·L−1、
pH0=5.5±0.1、
T=300 min罗丹明B
(rhodamine
B,RhB)$ {\text{O}}_{\text{2}}^{\text{·–}} $
1O2100% [62] MnO2/C@CNT 一锅法 Ccata=0.10 g·L−1、
CPMS=3.0 mmol·L−1
CTC=10 mg·L−1、
pH0=5.2、T=20 °C、
t=10 min四环素(tetracycline,
TC)$ {\text{SO}}_{\text{4}}^{\text{·–}} $ 85.6% [63] (注:Ccata:催化剂添加量;CPMS:过硫酸盐浓度;pH0:初始pH值;T:温度;t:反应时间)
(Note: Ccata: catalyst concentration; CPMS: persulfate concentration; pH0: initial pH value; T: temperature; t: reaction time) -
[1] 杜明辉, 王勇, 高群丽, 等. 臭氧微气泡处理有机废水的效果与机制 [J]. 化工进展, 2021, 40(12): 6907-6915. DU M H, WANG Y, GAO Q L, et al. Mechanism and efficiency of ozone microbubble treatment of organic wastewater [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6907-6915(in Chinese).
[2] 李珏秀, 刘纪林, 杨草原, 等. 微生物燃料电池辅助转盘液膜光催化降解染料废水 [J]. 中原工学院学报, 2022, 33(2): 51-57. LI J X, LIU J L, YANG C Y, et al. Degradation of dye wastewater by microbial fuel cell assisting rotating disk thin-film photocatalysis integrated system [J]. Journal of Zhongyuan University of Technology, 2022, 33(2): 51-57(in Chinese).
[3] 申大伟. 锰基催化剂对印染废水的降解研究 [J]. 印染助剂, 2022, 39(5): 21-26. SHEN D W. Degradation of printing and dyeing wastewater by Manganese based catalyst [J]. Textile Auxiliaries, 2022, 39(5): 21-26(in Chinese).
[4] 王渊源, 阎鑫, 艾涛, 等. 碳化泡沫负载Co3O4活化过硫酸盐降解罗丹明B [J]. 环境科学, 2022, 43(4): 2039-2046. WANG Y Y, YAN X, AI T, et al. Carbonized foam supported Co3O4 activated peroxymonosulfate towards rhodamine B degradation [J]. Environmental Science, 2022, 43(4): 2039-2046(in Chinese).
[5] 吴健森, 孟耀庭, 潘月燕, 等. 亚临界水氧化技术处理高盐难降解有机废水研究进展 [J]. 能源环境保护, 2022, 36(3): 30-36. doi: 10.3969/j.issn.1006-8759.2022.03.005 WU J S, MENG Y T, PAN Y Y, et al. Research progress in the treatment of refractory organic wastewater with high salinity by subcritical water oxidation technology [J]. Energy Environmental Protection, 2022, 36(3): 30-36(in Chinese). doi: 10.3969/j.issn.1006-8759.2022.03.005
[6] 马博雅, 孙立坤, 杨春维. 碳中和背景下我国污水处理技术思考 [J]. 应用化工, 2022, 51(10): 2997-3000. MA B Y, SUN L K, YANG C W. The feasible wastewater treatment technology in China under the background of carbon neutrality [J]. Applied Chemical Industry, 2022, 51(10): 2997-3000(in Chinese).
[7] 孙小淇, 郝泽伟, 陈家斌, 等. 碳中和背景下高盐废水中盐分的高效分离和资源化 [J]. 工业水处理, 2023, 43(2): 14-22. SUN X Q, HAO Z W, CHEN J B, et al. Efficient separation and resource recovery technology of salts in highly saline wastewater in the context of carbon neutrality [J]. Industrial Water Treatment, 2023, 43(2): 14-22(in Chinese).
[8] 吴百苗, 张一梅, 栗帅, 等. 基于LCA的污水处理方案碳中和综合影响评价 [J]. 环境工程, 2022, 40(6): 130-137. WU B M, ZHANG Y M, LI S, et al. Comprehensive impact assessment on carbon neutralization of wastewater treatment plants based on hybrid LCA [J]. Environmental Engineering, 2022, 40(6): 130-137(in Chinese).
[9] GLAZE W H, KANG J W, CHAPIN D H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation [J]. Ozone:Science & Engineering, 1987, 9(4): 335-352. [10] WEI Y, MIAO J, GE J X, et al. Ultrahigh peroxymonosulfate utilization efficiency over CuO nanosheets via heterogeneous Cu(III) formation and preferential electron transfer during degradation of phenols [J]. Environmental Science & Technology, 2022, 56(12): 8984-8992. [11] 齐亚兵. 活化过硫酸盐高级氧化法降解抗生素的研究进展 [J]. 化工进展, 2022, 41(12): 6627-6643. QI Y B. Research progress on degradation of antibiotics by activated persulfate advanced oxidation [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6627-6643(in Chinese).
[12] 邵强, 郭轶琼. 铁锰催化剂活化过硫酸盐去除水中苯酚的研究 [J]. 工业水处理, 2020, 40(7): 94-97. SHAO Q, GUO Y Q. Removal of phenol from water by activation of persulfate with Fe-Mn catalyst [J]. Industrial Water Treatment, 2020, 40(7): 94-97(in Chinese).
[13] 王庆宏, 李思雨, 牛皓, 等. 活化过硫酸盐氧化处理难降解废水的技术研究进展 [J]. 工业水处理, 2022, 42(8): 8-16,26. WANG Q H, LI S Y, NIU H, et al. An overview of activated persulfate oxidation processes in treatment of refractory wastewaters [J]. Industrial Water Treatment, 2022, 42(8): 8-16,26(in Chinese).
[14] 杨鹤云, 郑兴. 高级氧化法降解有机污染物的应用及研究进展 [J]. 水处理技术, 2021, 47(12): 13-18. YANG H Y, ZHENG X. Application and research progress of advanced oxidation process for degradation of organic pollutants [J]. Technology of Water Treatment, 2021, 47(12): 13-18(in Chinese).
[15] 杨淼淼. 高级氧化技术处理印染废水的研究进展 [J]. 生物化工, 2022, 8(1): 149-152. YANG M M. Research progress of advanced oxidation process for dyeing wastewater treatment based on free radical [J]. Biological Chemical Engineering, 2022, 8(1): 149-152(in Chinese).
[16] JIANG S F, LING L L, CHEN W J, et al. High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: Mechanistic elucidation and quantification of the contributors [J]. Chemical Engineering Journal, 2019, 359: 572-583. doi: 10.1016/j.cej.2018.11.124 [17] OLMEZ-HANCI T, ARSLAN-ALATON I. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol [J]. Chemical Engineering Journal, 2013, 224: 10-16. doi: 10.1016/j.cej.2012.11.007 [18] ZHANG X W, LAN M Y, WANG F, et al. ZIF-67-based catalysts in persulfate advanced oxidation processes (PS-AOPs) for water remediation [J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107997. doi: 10.1016/j.jece.2022.107997 [19] LIU Y H, KUO Y S, LIU W C. et al. Photoelectrocatalytic activity of perovskite YFeO3/carbon fiber composite electrode under visible light irradiation for organic wastewater treatment [J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 128: 227-236. doi: 10.1016/j.jtice.2021.08.029 [20] 马祯, 宋小三, 张轩. 紫外/过硫酸盐高级氧化技术在饮用水处理中的研究进展 [J]. 应用化工, 2022, 51(5): 1466-1471. MA Z, SONG X S, ZHANG X. Research progress of ultraviolet/persulfate advanced oxidation technology in drinking water treatment [J]. Applied Chemical Industry, 2022, 51(5): 1466-1471(in Chinese).
[21] 王静, 邓黎玲, 薛罡, 等. 物化-生化-高级氧化处理涂料废渣热催化废液 [J]. 水处理技术, 2019, 45(10): 100-105. WANG J, DENG L L, XUE G, et al. Physicochemical-biochemical advanced treatment for paint sludge thermocatalytic waste liquor [J]. Technology of Water Treatment, 2019, 45(10): 100-105(in Chinese).
[22] 吴秀, 方迪, 危亚云, 等. 热活化过一硫酸盐调理强化厌氧消化污泥脱水的研究 [J]. 环境科学学报, 2021, 41(11): 4547-4553. WU X, FANG D, WEI Y Y, et al. Improved dewaterability of anaerobically digested sewage sludge by thermally activated peroxymonosulfate [J]. Acta Scientiae Circumstantiae, 2021, 41(11): 4547-4553(in Chinese).
[23] LONG L L, BAI C W, ZHOU X Y, et al. A novel strategy for promoting PMS activation: Enhanced utilization of side reactions [J]. Separation and Purification Technology, 2022, 297: 121432. doi: 10.1016/j.seppur.2022.121432 [24] 程佳鑫, 李荣兴, 杨海涛, 等. 三维电催化氧化处理难生化降解有机废水研究进展 [J]. 环境化学, 2022, 41(1): 288-304. doi: 10.7524/j.issn.0254-6108.2020082804 CHENG J X, LI R X, YANG H T, et al. Review of three-dimensional electrodes for bio-refractory organic wastewater treatment [J]. Environmental Chemistry, 2022, 41(1): 288-304(in Chinese). doi: 10.7524/j.issn.0254-6108.2020082804
[25] 左静, 秦丰林, 方国东. 电化学活化过硫酸盐修复土壤有机污染研究进展 [J]. 现代农业科技, 2021(13): 179-185. ZUO J, QIN F L, FANG G D. Research progress on remediation of soil organic pollution by electrochemical activation of persulfate [J]. Modern Agricultural Science and Technology, 2021(13): 179-185(in Chinese).
[26] 杨晴, 孙昕, 李鹏飞, 等. 超声活化过硫酸盐降解甲基橙的影响因素研究 [J]. 环境科学学报, 2020, 40(8): 2715-2721. YANG Q, SUN X, LI P F, et al. Influencing factors of methyl orange degradation by ultrasound activated persulfate [J]. Acta Scientiae Circumstantiae, 2020, 40(8): 2715-2721(in Chinese).
[27] 张楠, 陈蕾. 超声活化过硫酸盐降解废水中有机污染物的研究进展 [J]. 应用化工, 2021, 50(10): 2805-2808,2813. ZHANG N, CHEN L. Research progress of ultrasonic activated persulfate for degradation of organic pollutants in wastewater [J]. Applied Chemical Industry, 2021, 50(10): 2805-2808,2813(in Chinese).
[28] 朱佳, 宋慧, 高敏, 等. 超声协同MoS2/g-C3N4活化过硫酸盐降解二甲基亚砜的研究 [J]. 化工新型材料, 2022, 50(9): 179-184,190. ZHU J, SONG H, GAO M, et al. Degradation of dimethyl sulfoxide by ultrasonic synergistic [J]. New Chemical Materials, 2022, 50(9): 179-184,190(in Chinese).
[29] 张磊, 祝思频, 张青青, 等. 微波活化过硫酸盐降解典型选矿药剂水杨羟肟酸 [J]. 环境化学, 2022, 41(8): 3414-3424. doi: 10.7524/j.issn.0254-6108.2021030801 ZHANG L, ZHU S P, ZHANG Q Q, et al. Degradation of salicylhydroxamic acid by microwave activated persulfate [J]. Environmental Chemistry, 2022, 41(8): 3414-3424(in Chinese). doi: 10.7524/j.issn.0254-6108.2021030801
[30] 程爱华, 马万超, 徐哲. 等离子体改性海绵铁活化过硫酸盐处理含酚废水 [J]. 化工进展, 2020, 39(2): 798-804. CHENG A H, MA W C, XU Z. Treatment of phenol wastewater with persulfate activated by plasmamodified sponge iron [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 798-804(in Chinese).
[31] 李春琴, 邹亚辰, 贾小宁. 过硫酸盐高级氧化技术活化方法及降解机理的研究进展 [J]. 化学与生物工程, 2022, 39(6): 1-6,27. LI C Q, ZOU Y C, JIA X N. Research progress in activation methods of persulfate and degradation mechanism of organic pollutants by persulfate advanced oxidation process [J]. Chemistry & Bioengineering, 2022, 39(6): 1-6,27(in Chinese).
[32] 凌良雄, 陆建, 周易, 等. 铁基材料活化过硫酸盐降解水中抗生素的研究进展 [J]. 环境科学研究, 2022, 35(1): 290-298. LING L X, LU J, ZHOU Y, et al. Persulfate activated by iron-based materials for degradation of antibiotics in water: A review [J]. Research of Environmental Sciences, 2022, 35(1): 290-298(in Chinese).
[33] 田婷婷, 李朝阳, 王召东, 等. 过渡金属活化过硫酸盐降解有机废水技术研究进展 [J]. 化工进展, 2021, 40(6): 3480-3488. TIAN T T, LI C Y, WANG S D, et al. Research progress of transition metal activated persulfate to degrade organic wastewater [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3480-3488(in Chinese).
[34] 李书典, 郑德山, 郭峰. 二氧化锰催化氧化性能的研究进展 [J]. 现代化工, 2020, 40(3): 52-56. LI S D, ZHENG D S, GUO F. Research progress on catalytic oxidation performance of Manganese dioxide [J]. Modern Chemical Industry, 2020, 40(3): 52-56(in Chinese).
[35] 周自成, 刘悦, 李英, 等. 纳米Mn3O4的快速制备及其对亚甲基蓝的类芬顿催化氧化性能 [J]. 矿冶工程, 2020, 40(4): 153-155,160. ZHOU Z C, LIU Y, LI Y, et al. Simple and rapid preparation of nano-Mn3O4 and its Fenton-like catalytic oxidation of methylene blue [J]. Mining and Metallurgical Engineering, 2020, 40(4): 153-155,160(in Chinese).
[36] 张磊, 王胜, 汪明哲, 等. CoMnOx/Al2O3/monolith整体催化剂的制备及其催化臭氧分解性能 [J]. 工业催化, 2020, 28(1): 17-23. ZHANG L, WANG S, WANG M Z, et al. Preparation of CoMnOx/Al2O3/monolith catalyst for ozone elimination [J]. Industrial Catalysis, 2020, 28(1): 17-23(in Chinese).
[37] FU R, ZHANG P S, JIANG Y X, et al. Wastewater treatment by anodic oxidation in electrochemical advanced oxidation process: Advance in mechanism, direct and indirect oxidation detection methods [J]. Chemosphere, 2023, 311: 136993. doi: 10.1016/j.chemosphere.2022.136993 [38] LIN C, LI J L, LI X P, et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation [J]. Nature Catalysis, 2021, 4(12): 1012-1023. doi: 10.1038/s41929-021-00703-0 [39] ZHOU Y, FENG S, DUAN X M, et al. MnO2/UIO-66 improves the catalysed degradation of oxytetracycline under UV/H2O2/PMS system [J]. Journal of Solid State Chemistry, 2021, 300: 122231. doi: 10.1016/j.jssc.2021.122231 [40] GUO M N, FANG R M, LIU X W, et al. Experimental study of volatile organic compounds catalytic combustion on Cu-Mn catalysts with different carriers [J]. International Journal of Energy Research, 2021, 45(6): 8749-8762. doi: 10.1002/er.6411 [41] QIN C H, GUO M K, JIANG C C, et al. Simultaneous oxidation of toluene and ethyl acetate by dielectric barrier discharge combined with Fe, Mn and Mo catalysts [J]. Science of the Total Environment, 2021, 782: 146931. doi: 10.1016/j.scitotenv.2021.146931 [42] 向宁, 韩小金, 郑剑锋, 等. 锰改性对ZIF-67衍生Co3O4低温催化氧化甲醛性能的影响 [J]. 燃料化学学报, 2022, 50(7): 859-867. XIANG N, HAN X J, ZHENG J F, et al. Effect of Manganese modification on catalytic oxidation of formaldehyde at low temperature by Co3O4 derived from ZIF-67 [J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 859-867(in Chinese).
[43] DING Y B, WANG X R, FU L B, et al. Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): Recent advances and perspective [J]. Science of the Total Environment, 2021, 765: 142794. doi: 10.1016/j.scitotenv.2020.142794 [44] WACLAWEK S, LUTZE H V, GRüBEL K, et al. Chemistry of persulfates in water and wastewater treatment: A review [J]. Chemical Engineering Journal, 2017, 330: 44-62. doi: 10.1016/j.cej.2017.07.132 [45] XIAO J Y, LI R, DONG H R, et al. Activation of sulfite via zero-valent iron-Manganese bimetallic nanomaterials for enhanced sulfamethazine removal in aqueous solution: Key roles of Fe/Mn molar ratio and solution pH [J]. Separation and Purification Technology, 2022, 297: 121479. doi: 10.1016/j.seppur.2022.121479 [46] SHAH N S, ALI KHAN J, SAYED M, et al. Hydroxyl and sulfate radical mediated degradation of ciprofloxacin using nano zerovalent Manganese catalyzed S2O82− [J]. Chemical Engineering Journal, 2019, 356: 199-209. doi: 10.1016/j.cej.2018.09.009 [47] YANG Y S, ZHAO Y, ZONG Y, et al. Activation of peroxymonosulfate by α-MnO2 for Orange Ⅰ removal in water [J]. Environmental Research, 2022, 210: 112919. doi: 10.1016/j.envres.2022.112919 [48] XU X M, ZHANG Y Q, ZHOU S Q, et al. Activation of persulfate by MnOOH: Degradation of organic compounds by nonradical mechanism [J]. Chemosphere, 2021, 272: 129629. doi: 10.1016/j.chemosphere.2021.129629 [49] ZHAO M J, XU R S, CHEN Z Q, et al. Kinetics and mechanisms of diniconazole degradation by α-MnO2 activated peroxymonosulfate [J]. Separation and Purification Technology, 2022, 281: 119850. doi: 10.1016/j.seppur.2021.119850 [50] 刘畅, 王宇寒, 胡清, 等. 太阳光/CuMnFe LDHs催化剂/过一硫酸盐体系降解双酚A [J]. 环境工程学报, 2021, 15(11): 3545-3560. LIU C, WANG Y H, HU Q, et al. Degradation of bisphenol A using CuMnFe LDHs catalyst and peroxymonosulfate under solar light [J]. Chinese Journal of Environmental Engineering, 2021, 15(11): 3545-3560(in Chinese).
[51] 李广英, 杜敏洁, 谈成英, 等. 锰铁氧体活化PMS降解双酚A的过程机制 [J]. 环境工程学报, 2021, 15(9): 2952-2962. LI G Y, DU M J, TAN C Y, et al. Mechanism of BPA degradation in a system of peroxymonosulfate activated by a Mn/Fe bimetallic oxide catalysts [J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2952-2962(in Chinese).
[52] HU L X, DENG G H, LU W C, et al. Peroxymonosulfate activation by Mn3O4/metal-organic framework for degradation of refractory aqueous organic pollutant rhodamine B [J]. Chinese Journal of Catalysis, 2017, 38(8): 1360-1372. doi: 10.1016/S1872-2067(17)62875-4 [53] CHEN G, ZHANG X Y, GAO Y J, et al. Novel magnetic MnO2/MnFe2O4 nanocomposite as a heterogeneous catalyst for activation of peroxymonosulfate (PMS) toward oxidation of organic pollutants [J]. Separation and Purification Technology, 2019, 213: 456-464. doi: 10.1016/j.seppur.2018.12.049 [54] ZHAO Y L, WANG H, JI J Q, et al. Recycling of waste power lithium-ion batteries to prepare nickel/cobalt/Manganese-containing catalysts with inter-valence cobalt/Manganese synergistic effect for peroxymonosulfate activation [J]. Journal of Colloid and Interface Science, 2022, 626: 564-580. doi: 10.1016/j.jcis.2022.06.112 [55] XU L S, SUN X B, HONG J M, et al. Peroxymonosulfate activation by α-MnO2/MnFe2O4 for norfloxacin degradation: Efficiency and mechanism [J]. Journal of Physics and Chemistry of Solids, 2021, 153: 110029. doi: 10.1016/j.jpcs.2021.110029 [56] 毛韦达, 胡翔. La0.5Sr0.5Co0.8Mn0.2O3-δ钙钛矿对过一硫酸盐降解水中四溴双酚A影响实验研究 [J]. 地学前缘, 2019, 26(3): 255-262. MAO W D, HU X. Exoerinentai studies of the effect of perovskite La0.5Sr0.5Co0.8Mn0.2O3-δ on tetrabromobisphenol A degradation in water by peroxy-monosulfate [J]. Earth Science Frontiers, 2019, 26(3): 255-262(in Chinese).
[57] NIE Y L, ZHOU H, TIAN S, et al. Anionic ligands driven efficient ofloxacin degradation over LaMnO3 suspended particles in water due to the enhanced peroxymonosulfate activation [J]. Chemical Engineering Journal, 2022, 427: 130998. doi: 10.1016/j.cej.2021.130998 [58] LIANG J X, GUO M M, XUE Y X, et al. Constructing magnetically separable Manganese-based spinel ferrite from spent ternary lithium-ion batteries for efficient degradation of bisphenol A via peroxymonosulfate activation [J]. Chemical Engineering Journal, 2022, 435: 135000. doi: 10.1016/j.cej.2022.135000 [59] DU J Y, XU W S, LIU J, et al. Efficient degradation of Acid Orange 7 by persulfate activated with a novel developed carbon-based MnFe2O4 composite catalyst [J]. Journal of Chemical Technology & Biotechnology, 2020, 95(4): 1135-1145. [60] HUANG D L, ZHANG Q, ZHANG C, et al. Mn doped magnetic biochar as persulfate activator for the degradation of tetracycline [J]. Chemical Engineering Journal, 2020, 391: 123532. doi: 10.1016/j.cej.2019.123532 [61] YANG Z, WANG Z W, LIANG G W, et al. Catalyst bridging-mediated electron transfer for nonradical degradation of bisphenol A via natural Manganese ore-cornstalk biochar composite activated peroxymonosulfate [J]. Chemical Engineering Journal, 2021, 426: 131777. doi: 10.1016/j.cej.2021.131777 [62] HUANG C, WANG Y L, GONG M, et al. α-MnO2/Palygorskite composite as an effective catalyst for heterogeneous activation of peroxymonosulfate (PMS) for the degradation of Rhodamine B [J]. Separation and Purification Technology, 2020, 230: 115877. doi: 10.1016/j.seppur.2019.115877 [63] WANG Z X, HAN Y F, FAN W L, et al. Shell-core MnO2/Carbon@Carbon nanotubes synthesized by a facile one-pot method for peroxymonosulfate oxidation of tetracycline [J]. Separation and Purification Technology, 2021, 278: 119558. doi: 10.1016/j.seppur.2021.119558 [64] LI Y T, LI H S, LIU F L, et al. Zero-valent iron-Manganese bimetallic nanocomposites catalyze hypochlorite for enhanced thallium(I) oxidation and removal from wastewater: Materials characterization, process optimization and removal mechanisms [J]. Journal of Hazardous Materials, 2020, 386: 121900. doi: 10.1016/j.jhazmat.2019.121900 [65] DADA A O, ADEKOLA F A, ODEBUNMI E O. Liquid phase scavenging of Cd (II) and Cu (II) ions onto novel nanoscale zerovalent Manganese (nZVMn): Equilibrium, kinetic and thermodynamic studies [J]. Environmental Nanotechnology, Monitoring & Management, 2017, 8: 63-72. [66] PANDA A P, ROUT P, JENA K K, et al. Core–shell structured zero-valent Manganese (ZVM): A novel nanoadsorbent for efficient removal of As(iii) and As(v) from drinking water [J]. Journal of Materials Chemistry A, 2019, 7(16): 9933-9947. doi: 10.1039/C9TA00428A [67] 贺君, 陈思琦, 唐首锋, 等. MnO2/EGM电极制备及电化学降解罗丹明B的研究 [J]. 环境科学学报, 2020, 40(11): 3922-3930. HE J, CHEN S Q, TANG S F, et al. Preparation of MnO2/EGM electrode and electrochemical degradation of Rhodamine B [J]. Acta Scientiae Circumstantiae, 2020, 40(11): 3922-3930(in Chinese).
[68] SHEN S T, ZHOU X Q, ZHAO Q D, et al. Understanding the nonradical activation of peroxymonosulfate by different crystallographic MnO2: The pivotal role of MnIII content on the surface [J]. Journal of Hazardous Materials, 2022, 439: 129613. doi: 10.1016/j.jhazmat.2022.129613 [69] NDAYIRAGIJE S, ZHANG Y F, ZHOU Y Q, et al. Mechanochemically tailoring oxygen vacancies of MnO2 for efficient degradation of tetrabromobisphenol A with peroxymonosulfate [J]. Applied Catalysis B:Environmental, 2022, 307: 121168. doi: 10.1016/j.apcatb.2022.121168 [70] YI H L, WANG Y H, DIAO L L, et al. Ultrasonic treatment enhances the formation of oxygen vacancies and trivalent Manganese on α-MnO2 surfaces: Mechanism and application [J]. Journal of Colloid and Interface Science, 2022, 626: 629-638. doi: 10.1016/j.jcis.2022.06.144 [71] LI M, ZHANG H, LIU Z L, et al. Surface lattice oxygen mobility inspired peroxymonosulfate activation over Mn2O3 exposing different crystal faces toward bisphenol A degradation [J]. Chemical Engineering Journal, 2022, 450: 138147. doi: 10.1016/j.cej.2022.138147 [72] OUYANG H, WU C, QIU X H, et al. New insight of Mn(III) in δ-MnO2 for peroxymonosulfate activation reaction: Via direct electron transfer or via free radical reactions [J]. Environmental Research, 2023, 217: 114874. doi: 10.1016/j.envres.2022.114874 [73] ZHOU Z G, DU H M, DAI Z H, et al. Degradation of organic pollutants by peroxymonosulfate activated by MnO2 with different crystalline structures: Catalytic performances and mechanisms [J]. Chemical Engineering Journal, 2019, 374: 170-180. doi: 10.1016/j.cej.2019.05.170 [74] 王淑敏, 林海龙, 侯俊斌, 等. MnO2的生长机理及其对罗丹明B的快速降解 [J]. 材料科学与工程学报, 2022, 40(1): 34-39. WANG S M, LIN H L, HOU J B, et al. Growth mechanism of MnO2 and its rapid degradation of rhodamine B [J]. Journal of Materials Science and Engineering, 2022, 40(1): 34-39(in Chinese).
[75] 闵弘扬, 王赟, 冉献强, 等. Cu-Mn/ZSM-5催化剂的制备及其催化降解酸性红的研究 [J]. 工业用水与废水, 2015, 46(1): 52-56,64. MIN H Y, WANG Y, RAN X Q, et al. Study on Cu-Mn/ZSM-5 catalyst preparation and its catalytic degradation performance on acid red [J]. Industrial Water & Wastewater, 2015, 46(1): 52-56,64(in Chinese).
[76] GHASEMI H, MOZAFFARI S, MOUSAVI S H, et al. Decolorization of wastewater by heterogeneous Fenton reaction using MnO2-Fe3O4/CuO hybrid catalysts [J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105091. doi: 10.1016/j.jece.2021.105091 [77] LIU M, YIN W, ZHAO T L, et al. High-efficient removal of organic dyes from model wastewater using Mg(OH)2-MnO2 nanocomposite: Synergistic effects of adsorption, precipitation, and photodegradation [J]. Separation and Purification Technology, 2021, 272: 118901. doi: 10.1016/j.seppur.2021.118901 [78] PANIMALAR S, SUBASH M, CHANDRASEKAR M, et al. Reproducibility and long-term stability of Sn doped MnO2 nanostructures: Practical photocatalytic systems and wastewater treatment applications [J]. Chemosphere, 2022, 293: 133646. doi: 10.1016/j.chemosphere.2022.133646 [79] THAO L T, van NGUYEN T, NGUYEN V Q, et al. Orange G degradation by heterogeneous peroxymonosulfate activation based on magnetic MnFe2O4/α-MnO2 hybrid [J]. Journal of Environmental Sciences, 2023, 124: 379-396. doi: 10.1016/j.jes.2021.10.008 [80] SHI Q Q, PU S Y, YANG X, et al. Enhanced heterogeneous activation of peroxymonosulfate by boosting internal electron transfer in a bimetallic Fe3O4-MnO2 nanocomposite [J]. Chinese Chemical Letters, 2022, 33(4): 2129-2133. doi: 10.1016/j.cclet.2021.07.063 [81] ANUSHREE C, NANDA GOPALA KRISHNA D, PHILIP J. Efficient dye degradation via catalytic persulfate activation using iron oxide-Manganese oxide core-shell particle doped with transition metal ions [J]. Journal of Molecular Liquids, 2021, 337: 116429. doi: 10.1016/j.molliq.2021.116429 [82] WANG Z M, WANG Z H, LI W, et al. Performance comparison and mechanism investigation of Co3O4-modified different crystallographic MnO2 (α, β, γ, and δ) as an activator of peroxymonosulfate (PMS) for sulfisoxazole degradation [J]. Chemical Engineering Journal, 2022, 427: 130888. doi: 10.1016/j.cej.2021.130888 [83] JIANG Z R, WANG P F, ZHOU Y X, et al. Fabrication of a 3D-blocky catalyst (CoMnOx@sponge) via mooring Co-Mn bimetallic oxide on sponge to activate peroxymonosulfate for convenient and efficient degradation of sulfonamide antibiotics [J]. Chemical Engineering Journal, 2022, 446: 137306. doi: 10.1016/j.cej.2022.137306 [84] CHEN L, MAQBOOL T, NAZIR G, et al. Peroxymonosulfate activated by composite ceramic membrane for the removal of pharmaceuticals and personal care products (PPCPs) mixture: Insights of catalytic and noncatalytic oxidation [J]. Water Research, 2023, 229: 119444. doi: 10.1016/j.watres.2022.119444 [85] ZHAO Y, LI B, LI Y, et al. Synergistic activation of peroxymonosulfate between Co and MnO for bisphenol A degradation with enhanced activity and stability [J]. Journal of Colloid and Interface Science, 2022, 623: 775-786. doi: 10.1016/j.jcis.2022.05.105 [86] CHEN L J, LI Y H, ZHANG J W, et al. Oxidative degradation of tetracycline hydrochloride by Mn2O3/Bi2O3 photocatalysis activated peroxymonosulfate [J]. Inorganic Chemistry Communications, 2022, 140: 109414. doi: 10.1016/j.inoche.2022.109414 [87] WANG L H, XU H D, JIANG N, et al. Effective activation of peroxymonosulfate with natural Manganese-containing minerals through a nonradical pathway and the application for the removal of bisphenols [J]. Journal of Hazardous Materials, 2021, 417: 126152. doi: 10.1016/j.jhazmat.2021.126152 [88] HE B, YANG Y, LIU B R, et al. Degradation of chlortetracycline hydrochloride by peroxymonosulfate activation on natural Manganese sand through response surface methodology [J]. Environmental Science and Pollution Research, 2022, 29(54): 82584-82599. doi: 10.1007/s11356-022-21556-5 [89] CHEN T, ZHU Z L, WANG Z Y, et al. 3D hollow sphere-like Cu-incorporated LaAlO3 perovskites for peroxymonosulfate activation: Coaction of electron transfer and oxygen defect [J]. Chemical Engineering Journal, 2020, 385: 123935. doi: 10.1016/j.cej.2019.123935 [90] FAYYAZ A, SARAVANAKUMAR K, TALUKDAR K, et al. Catalytic oxidation of naproxen in cobalt spinel ferrite decorated Ti3C2Tx MXene activated persulfate system: Mechanisms and pathways [J]. Chemical Engineering Journal, 2021, 407: 127842. doi: 10.1016/j.cej.2020.127842 [91] HUANG M J, PENG S S, XIANG W, et al. Strong metal-support interaction between carbon nanotubes and Mn-Fe spinel oxide in boosting peroxymonosulfate activation: Underneath mechanisms and application [J]. Chemical Engineering Journal, 2022, 429: 132372. doi: 10.1016/j.cej.2021.132372 [92] MANOS D, MISERLI K, KONSTANTINOU I. Perovskite and spinel catalysts for sulfate radical-based advanced oxidation of organic pollutants in water and wastewater systems [J]. Catalysts, 2020, 10(11): 1299. doi: 10.3390/catal10111299 [93] UTAMA P S, WIDAYATNO W B, AZHAR M R, et al. LaMnO3 perovskite activation of peroxymonosulfate for catalytic palm oil mill secondary effluent degradation [J]. Journal of Applied Materials and Technology, 2020, 2(1): 27-35. doi: 10.31258/Jamt.2.1.27-35 [94] WANG T, QIAN X F, YUE D T, et al. CaMnO3 perovskite nanocrystals for efficient peroxydisulfate activation [J]. Chemical Engineering Journal, 2020, 398: 125638. doi: 10.1016/j.cej.2020.125638 [95] GAO P P, TIAN X K, FU W, et al. Copper in LaMnO3 to promote peroxymonosulfate activation by regulating the reactive oxygen species in sulfamethoxazole degradation [J]. Journal of Hazardous Materials, 2021, 411: 125163. doi: 10.1016/j.jhazmat.2021.125163 [96] GUO J X, JING Y, SHEN T, et al. Effect of doped strontium on catalytic properties of La1‒xSrxMnO3 for rhodamine B degradation [J]. Journal of Rare Earths, 2021, 39(11): 1362-1369. doi: 10.1016/j.jre.2020.12.017 [97] LUO H D, GUO J X, SHEN T, et al. Study on the catalytic performance of LaMnO3 for the RhB degradation [J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 109: 15-25. doi: 10.1016/j.jtice.2020.01.011 [98] JIANG Z R, LI Y X, ZHOU Y X, et al. Co3O4-MnO2 nanoparticles moored on biochar as a catalyst for activation of peroxymonosulfate to efficiently degrade sulfonamide antibiotics [J]. Separation and Purification Technology, 2022, 281: 119935. doi: 10.1016/j.seppur.2021.119935 [99] YANG X, WEI G L, WU P Q, et al. Novel halloysite nanotube-based ultrafine CoMn2O4 catalyst for efficient degradation of pharmaceuticals through peroxymonosulfate activation [J]. Applied Surface Science, 2022, 588: 152899. doi: 10.1016/j.apsusc.2022.152899 [100] NGUYEN T B, LE V R, HUANG C P, et al. Construction of ternary NiCo2O4/MnOOH/GO composite for peroxymonosulfate activation with enhanced catalytic activity toward ciprofloxacin degradation [J]. Chemical Engineering Journal, 2022, 446: 137326. doi: 10.1016/j.cej.2022.137326 [101] WU Y H, LI Y L, HE J Y, et al. Nano-hybrids of needle-like MnO2 on graphene oxide coupled with peroxymonosulfate for enhanced degradation of norfloxacin: A comparative study and probable degradation pathway [J]. Journal of Colloid and Interface Science, 2020, 562: 1-11. doi: 10.1016/j.jcis.2019.11.121 [102] PAN M, WANG N, WENG Z T, et al. The synergistic activation of peroxymonosulfate for the degradation of Acid Scarlet GR by palygorskite/MnO2/Fe3O4 nanocomposites [J]. Dalton Transactions (Cambridge, England:2003), 2023, 52(4): 1009-1020. doi: 10.1039/D2DT02998G [103] HU Y Y, SUN S Y, GUO J L, et al. In situ anchoring strategy to enhance dual nonradical degradation of sulfamethoxazole with high loading manganese doped carbon nitride [J]. Chemosphere, 2022, 303: 135035. doi: 10.1016/j.chemosphere.2022.135035 [104] GONG Y X, WU Y N, SHEN J M, et al. Generation of interfacial high-spin Manganese intermediates as reactive oxidant during peroxymonosulfate activation mediated by amorphous MnOx supported on polymeric substrate [J]. Applied Catalysis B:Environmental, 2022, 316: 121671. doi: 10.1016/j.apcatb.2022.121671