-
地下水是地球自然资源中淡水的主要来源之一,具有分布广泛、变化稳定、水质良好和便于应用等优点. 在我国西北内陆干旱区,地下水往往成为诸多地区不可替代的供水水源[1]. 在漫长的地质演化过程中,地下水与周围的环境(大气、地表水、岩石)进行长期的相互作用从而逐渐形成了与地表水有明显不同的水化学成分[2]. 依据地下水中各项检测指标,结合水文地质条件,综合运用数理统计[3]、piper三线图[4]、Gibbs图[5]、离子比值[6]等方法是研究地下水水化学特征及成因的常用方法,被国内外诸多学者采用. 近年来,随着人类活动的影响加剧,使得地下水化学组分来源趋于复杂化,大多学者采用多元统计分析的方法来探讨影响地下水水化学的主要因子,但因子分析与主成分分析的结果难以定量分析出各指标的贡献程度. Thurston 与 Spengler[7]在1985年提出的绝对主成分得分(APCS)的概念,能够对每个主成分分析结果中各因子的贡献程度进行定量解析,并被广泛运用于大气科学领域[8]、土壤学领域[9]和地下水科学领域中[10].
新疆渭干河流域以农业为主、农牧结合,是新疆重要的粮食与棉花的产地之一. 流域内气候干旱,蒸发强烈,伴随着人类活动加剧,使得渭干河流域盐碱地面积扩大,严重影响当地生产生活. 近年来,相关学者主要对渭干河流域地下水埋深时空变化特征[11]、地下水资源评价[12]和地下水盐化特征[13]等方面进行研究,且目前与地下水相关的研究大多集中在渭干河-库车河三角绿洲处,而针对整个渭干河流域地下水水化学特征及成因的具体论述尚显不足.
因此,本文基于65组浅层地下水样品的水质检测数据对流域浅层地下水水化学类型进行划分,采用绝对主成分得分-多元回归受体模型、Gibbs图解法和离子比值等方法查明研究区浅层地下水中主要离子的来源及影响因素. 全面分析研究区浅层地下水水化学成因,对保护流域地下水环境,实现区域水资源可持续发展有着现实意义.
渭干河流域浅层地下水水化学特征及成因分析
Hydrochemical characteristics and formation mechanism of shallow groundwater in Weigan River Basin
-
摘要: 为探明新疆渭干河流域浅层地下水的水化学特征及其主要离子来源,综合运用数理统计、Durov图、Gibbs图、离子比例系数、绝对主成分得分-多元线性回归受体模型(APCS-MLR)等方法对渭干河流域2018年65组浅层地下水水样的检测数据进行分析. 研究结果表明,流域内多数地下水取样点总硬度偏高,溶解性总固体中等,地下水以淡水为主. 潜水水化学类型种类复杂多变,主要有HCO3·SO4·Cl-Na·Ca、SO4·Cl-Na·Ca·Mg、HCO3·Cl-Na·Ca·Mg和HCO3·SO4-Ca型;浅层承压水水化学类型以SO4·Cl-Na型与HCO3·SO4·Cl-Na·Ca·Mg型为主. 流域内地下水形成主要受到蒸发-浓缩作用,其次为岩石溶滤作用,其中Na+主要来自岩盐的溶解,少量来自于硅酸盐岩的溶解,Ca2+和Mg2+主要来源于碳酸盐岩的溶解,部分来源于蒸发盐岩和硅酸盐岩的溶解. 此外,阳离子交换作用与人类活动影响对流域内地下水中化学组分的形成也有一定贡献.Abstract: Based on 65 groups of shallow groundwater investigation datas in 2018, mathematical statistics, Durov diagram, Gibbs diagram, ion ratio, and absolute principal component score-multiple linear regression receptor model (APCS-MLR) were used to analyze the hydrochemical characteristics and main ion sources. Results showed that the total hardness of most groundwater samples in the basin was high, the total dissolved solid was medium, and the groundwater was mainly freshwater. The hydrochemistry types of phreatic water were complex and varied, mainly HCO3·SO4·Cl-Na·Ca, SO4·Cl-Na·Ca·Mg, HCO3·SO4-Ca and HCO3·Cl-Na·Ca·Mg. The hydrochemistry types of shallow confined groundwater were mainly SO4·Cl-Na and HCO3·SO4·Cl-Na·Ca·Mg. The groundwater formation was mainly affected by evaporation-concentration, followed by rock leaching, of which Na+ was mainly derived from the dissolution of halite, and a small amount derived from the dissolution of silicate. Ca2+ and Mg2+ were mainly derived from the dissolution of carbonate rocks, and partly from the dissolution of evaporite rocks and silicate rocks. In addition, cation exchange and human activities had a certain contribution to the formation of chemical components in groundwater.
-
Key words:
- shallow groundwater /
- hydrochemical characteristics /
- ion sources /
- Weigan River Basin.
-
表 1 地下水样品检测方法及检出限
Table 1. Test methods and detection limit of groundwater samples
指标
Indexes检测方法
Test methods检出限
Detection limitCl− 硝酸银容量法 0.05 mg·L−1 Ca2+、Mg2+、Mg2+、总硬度(TH,以CaCO3计) 乙二胺四乙酸二钠滴定法 K+、Na+ 火焰原子吸收分光光度法 SO42− 硫酸钡比浊法 溶解性总固体(TDS) 电子天平MP8-1测定 0.10 mg·L−1 NO3− 紫外分光光度法 0.20 mg·L−1 pH 玻璃电极法 0.01 表 2 地下水主要水化学指标特征值统计
Table 2. Characteristic value statistics of main hydrochemical indexes of groundwater
地下水类型
Groundwater types统计值
StatisticsTH TDS Na++K+ Ca2+ Mg2+ Cl− SO42− HCO3− NO3− pH 潜水
Phreatic water
(n=26)最小值 138.1 206.0 14.1 32.1 7.3 12.3 49.5 106.3 — 7.1 最大值 1272.0 3476.3 714.1 252.6 178.1 990.2 1229.6 394.6 25.2 8.2 均值 452.1 869.8 133.3 102.1 47.9 173.1 285.3 218.0 6.4 7.6 标准差 332.7 794.7 159.4 60.1 48.2 219.6 309.6 85.5 6.7 0.3 变异系数 0.74 0.91 1.20 0.59 1.01 1.27 1.09 0.39 1.05 0.04 浅层承压水
Shallow confined
groundwater(n=39)最小值 40.5 276.1 37.2 10.8 3.3 33.3 59.1 57.7 — 7.1 最大值 2272.0 7105.0 1715.4 345.8 342.0 2287.0 2217.0 546.4 15.1 8.8 均值 519.9 1277.5 255.1 100.1 65.6 314.6 415.1 222.1 1.9 7.7 标准差 427.8 1332.3 325.2 67.0 66.5 405.0 487.7 121.5 3.8 0.4 变异系数 0.82 1.04 1.28 0.67 1.01 1.28 1.17 0.55 2.00 0.05 注:pH为无量纲,其余指标单位为mg·L−1;"—"表示该指标含量低于检出限.
Note: pH value is dimensionless, the other indexes units are mg·L−1; "—" indicates that the index concentration is below the detection limit.表 3 水化学组分主成分荷载值
Table 3. Principal component load value of hydrochemical components
指标
Indexes公因子
Common factorF1 F2 F3 TH 0.914 0.378 −0.041 TDS 0.964 0.247 −0.066 Na++K+ 0.963 0.174 −0.079 Ca2+ 0.823 0.470 0.033 Mg2+ 0.942 0.311 −0.083 Cl− 0.956 0.201 −0.074 SO42− 0.939 0.236 −0.068 HCO3− 0.432 0.732 0.049 NO3− −0.101 0.060 0.993 pH −0.186 −0.917 −0.032 贡献率
Contribution rate62.81% 20.29% 10.19% 累积贡献率
Cumulative contribution rate62.81% 83.10% 93.29% -
[1] 张人权, 梁杏, 靳孟贵. 水文地质学基础[M]. 6版. 北京: 地质出版社, 2011: 52. ZHANG R Q, LIANG X, JIN M G. Foundation of hydrogeology[M]. 6th ed. Beijing: Geological Publishing House, 2011: 52 (in Chinese).
[2] 钱会, 马致远. 水文地球化学[M]. 北京: 地质出版社, 2005: 2. QIAN H, MA Z Y. Hydrogeochemistry[M]. Beijing: Geological Publishing House, 2005: 2 (in Chinese).
[3] 曾小仙, 曾妍妍, 周金龙, 等. 石河子市浅层地下水化学特征及其成因分析 [J]. 干旱区研究, 2021, 38(1): 68-75. ZENG X X, ZENG Y Y, ZHOU J L, et al. Hydrochemical characteristics and cause analysis of the shallow groundwater in Shihezi City [J]. Arid Zone Research, 2021, 38(1): 68-75(in Chinese).
[4] 杨景燕, 杨余辉, 胡义成, 等. 新疆伊犁喀什河流域地表水水化学特征及控制因素 [J]. 环境化学, 2021, 40(12): 3815-3827. doi: 10.7524/j.issn.0254-6108.2021042108 YANG J Y, YANG Y H, HU Y C, et al. Hydrochemical characteristics and possible controls of the surface water in Kashi River Basin, Ili, Xinjiang [J]. Environmental Chemistry, 2021, 40(12): 3815-3827(in Chinese). doi: 10.7524/j.issn.0254-6108.2021042108
[5] 鲁涵, 曾妍妍, 周金龙, 等. 新疆祁漫塔格地区地下水化学特征及成因分析 [J]. 水资源与水工程学报, 2022, 33(2): 85-92. LU H, ZENG Y Y, ZHOU J L, et al. Hydrochemical characteristics of the groundwater in Qimantage area of Xinjiang and the formation causes [J]. Journal of Water Resources and Water Engineering, 2022, 33(2): 85-92(in Chinese).
[6] 丁启振, 雷米, 周金龙, 等. 博尔塔拉河上游河谷地区水化学特征及水质评价 [J]. 干旱区研究, 2022, 39(3): 829-840. DING Q Z, LEI M, ZHOU J L, et al. An assessment of groundwater, surface water, and hydrochemical characteristics in the upper valley of the Bortala River [J]. Arid Zone Research, 2022, 39(3): 829-840(in Chinese).
[7] THURSTON G D, SPENGLER J D. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston [J]. Atmospheric Environmen, 1985, 19(1): 9-25. doi: 10.1016/0004-6981(85)90132-5 [8] 张海霞, 蔡昂祖, 赵海萍, 等. 基于PMF和APCS-MLR模型的工业城市大气降尘金属源解析及综合污染评价 [J]. 环境工程学报, 2022, 16(11): 3816-3827. ZHANG H X, CAI A Z, ZHAO H P, et al. Metal source analysis and comprehensive pollution assessment of atmospheric dust in industrial cities based on PMF and APCS-MLR models [J]. Chinese Journal of Environmental Engineering, 2022, 16(11): 3816-3827(in Chinese).
[9] 卢鑫, 邝荣禧, 何跃, 等. 基于APCS-MLR模型和地统计学相结合的矿区农田土壤砷源解析 [J]. 土壤, 2022, 54(2): 379-384. LU X, KUANG R X, HE Y, et al. Source apportionment of arsenic in agricultural soils from a typical mining area based on APCS-MLR model and geostatistics [J]. Soils, 2022, 54(2): 379-384(in Chinese).
[10] 孟利, 左锐, 王金生, 等. 基于PCA-APCS-MLR的地下水污染源定量解析研究 [J]. 中国环境科学, 2017, 37(10): 3773-3786. MENG L, ZUO R, WANG J S, et al. Quantitative source apportionment of groundwater pollution based on PCA-APCS-MLR [J]. China Environmental Science, 2017, 37(10): 3773-3786(in Chinese).
[11] 玉素甫阿吉·克尤木, 买买提·沙吾提. 渭干河灌区地下水埋深时空变化特征分析 [J]. 黑龙江水利科技, 2012, 40(12): 37-38. [12] 陈雷, 陈波. 关于渭干河地下水资源评价的探究 [J]. 陕西水利, 2022, 253(2): 38-39,49. [13] 满苏尔·沙比提, 吐尔洪·依明. 渭干河―库车河三角洲绿洲地下水盐化特征及成因分析 [J]. 水文, 2009, 29(6): 58-61. doi: 10.3969/j.issn.1000-0852.2009.06.013 MANSUR S, TUERHON Y. Cause analysis: Salinization characteristics of underground water in delta oasis of the Weigan-Kuche River [J]. Journal of China Hydrology, 2009, 29(6): 58-61(in Chinese). doi: 10.3969/j.issn.1000-0852.2009.06.013
[14] 李春梅, 王书峰. 新疆塔里木河生态脆弱区渭干河灌区地下水特征分析 [J]. 中国西部科技, 2010, 9(8): 7-9,43. doi: 10.3969/j.issn.1671-6396.2010.08.003 LI C M, WANG S F. Analysis of the groundwater characteristics in the Weigan River irrigation area of Tarim River in Xinjiang [J]. Science and Technology of West China, 2010, 9(8): 7-9,43(in Chinese). doi: 10.3969/j.issn.1671-6396.2010.08.003
[15] WANG W R, CHEN Y N, WANG W H, et al. Evolution characteristics of groundwater and its response to climate and land-cover changes in the oasis of dried-up river in Tarim Basin [J]. Journal of Hydrology, 2021, 594: 125644. doi: 10.1016/j.jhydrol.2020.125644 [16] 雷米, 周金龙, 梁杏, 等. 新疆天山北麓中段孔隙水水化学特征及苏打水的成因 [J]. 地球科学, 2022, 47(2): 674-688. LEI M, ZHOU J L, LIANG X, et al. Hydrochemical characteristics of pore water and genesis of soda water in the middle of the northern piedmont of Tianshan Mountain, Xinjiang [J]. Earth Science, 2022, 47(2): 674-688(in Chinese).
[17] RAVISH S, SETIA B, DESWAL S. Groundwater quality analysis of northeastern Haryana using multivariate statistical techniques [J]. Journal of the Geological Society of India, 2020, 95(4): 407-416. doi: 10.1007/s12594-020-1450-z [18] 雷米, 周金龙, 张杰, 等. 新疆博尔塔拉河流域平原区地表水与地下水水化学特征及转化关系 [J]. 环境科学, 2022, 43(4): 1873-1884. LEI M, ZHOU J L, ZHANG J, et al. Hydrochemical characteristics and transformation relationship of surface water and groundwater in the plain area of Bortala River Basin, Xinjiang [J]. Environmental Science, 2022, 43(4): 1873-1884(in Chinese).
[19] 王慧玮, 郭小娇, 张千千, 等. 滹沱河流域地下水水化学特征演化及成因分析 [J]. 环境化学, 2021, 40(12): 3838-3845. doi: 10.7524/j.issn.0254-6108.2020080301 WANG H W, GUO X J, ZHANG Q Q, et al. Evolution of groundwater hydrochemical characteristics and origin analysis in Hutuo River Basin [J]. Environmental Chemistry, 2021, 40(12): 3838-3845(in Chinese). doi: 10.7524/j.issn.0254-6108.2020080301
[20] 张涛, 王明国, 张智印, 等. 然乌湖流域地表水水化学特征及控制因素 [J]. 环境科学, 2020, 41(9): 4003-4010. ZHANG T, WANG M G, ZHANG Z Y, et al. Hydrochemical characteristics and possible controls of the surface water in ranwu lake basin [J]. Environmental Science, 2020, 41(9): 4003-4010(in Chinese).
[21] 余东, 周金龙, 魏兴, 等. 新疆喀什地区西部潜水水化学特征及演化规律分析 [J]. 环境化学, 2021, 40(8): 2493-2504. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2020041301 YU D, ZHOU J L, WEI X, et al. Analysis of chemical characteristics and evolution of phreatic water in Western Kashgar Prefecture, Xinjiang [J]. Environmental Chemistry, 2021, 40(8): 2493-2504(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2020041301
[22] 孙英, 周金龙, 魏兴, 等. 巴楚县平原区地下水水化学特征及成因分析 [J]. 环境化学, 2019, 38(11): 2601-2609. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2018121002 SUN Y, ZHOU J L, WEI X, et al. Hydrochemical characteristics and cause analysis of groundwater in the plain area of Bachu County [J]. Environmental Chemistry, 2019, 38(11): 2601-2609(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2018121002
[23] 鲁涵, 曾妍妍, 周金龙, 等. 喀什噶尔河下游平原区地下水咸化特征及成因分析 [J]. 环境科学, 2022, 43(10): 4459-4469. LU H, ZENG Y Y, ZHOU J L, et al. Characteristics and causes of groundwater salinization in plain area of lower reaches of Kashigar River [J]. Environmental Science, 2022, 43(10): 4459-4469(in Chinese).
[24] 吴璇, 宋一心, 王金晓, 等. 山东省柴汶河上游地区地下水化学特征分析 [J]. 环境化学, 2021, 40(7): 2125-2134. doi: 10.7524/j.issn.0254-6108.2020022701 WU X, SONG Y X, WANG J X, et al. Groundwater hydrogeochemical characteristics in the up reaches of Chaiwen River, Shandong Province [J]. Environmental Chemistry, 2021, 40(7): 2125-2134(in Chinese). doi: 10.7524/j.issn.0254-6108.2020022701
[25] XIAO J, JIN Z D, ZHANG F. Geochemical controls on fluoride concentrations in natural waters from the middle Loess Plateau, China [J]. Journal of Geochemical Exploration, 2015, 159: 252-261. doi: 10.1016/j.gexplo.2015.09.018 [26] 周军, 王刚, 王庆军, 等. 新疆戈壁绿洲地质生态环境初步分析: 以渭干河和库车河流域为例 [J]. 新疆地质, 2019, 37(4): 469-472. ZHOU J, WANG G, WANG Q J, et al. Preliminary analysis of geological ecological environment of Gobi Oasis in Xinjiang: A case study on the Ugan-Kuqa River Delta Oasis [J]. Xinjiang Geology, 2019, 37(4): 469-472(in Chinese).
[27] 沈回归, 饶文波, 谭红兵, 等. 高寒区典型流域地下水化学特征、影响因素及健康风险 [J]. 河海大学学报(自然科学版), 2022, 50(6): 9-17. SHEN H G, RAO W B, TAN H B, et al. Chemical characteristics, influencing factors and health risks of groundwater in typical watershed in alpine region [J]. Journal of Hohai University (Natural Sciences), 2022, 50(6): 9-17(in Chinese).