-
异味是农药、化工等有机污染场地再开发过程中面临的突出环境问题,也是污染地块治理修复的难点[1 − 3]. 近年来,随着城市快速发展和产业升级的需要,大批农药企业逐渐停产、遗弃或搬迁,遗留下的工业污染场地,多数存在高污染高风险问题. 我国农药产量50%以上为有机磷农药,自2006年以来,随着高毒农药削减计划的实施,甲胺磷、对硫磷等高毒有机磷品种全部停止生产和使用,导致大批有机磷农药污染场地遗留[4]. 农药行业作为主要的异味污染贡献行业,其生产过程中涉及的原辅材料、中间体、产品及降解产物,经过跑冒滴漏或泄露事故等方式进入场地土壤及地下水环境,导致退役后的农药场地成为新的异味污染源[5 − 6]. 在修复过程中,原本藏匿在土壤中具有刺激性气味的物质被释放出来,导致修复现场异味强烈,对施工人员和周边居民产生严重影响,引发群体投诉事件.
国内外土壤管控污染物的确定主要考虑物质的健康风险,典型污染物包括有机溶剂类、氯代有机物、持久性有机物和重金属类. 美国对全国化工、农药、垃圾填埋等大约600个污染地块进行分析测定,结合健康风险评价方法,确定了275种优先控制污染物[7]. 2013年,荷兰修订发布《土壤修复通令》,规定了金属(13种)、无机物(3种)、芳香烃(7种)、多环芳烃(1种)、氯代烃(28种)、农药(17种)和其他物质(14种)共6大类83 种土壤干预值标准[8]. 欧盟梳理工业生产与服务场地、工业废物处置场、市政废弃物处置场等十大类污染场地调查结果,确定氯代苯、芳香烃、酚类、氰化物、重金属等33种优先控制污染物[9]. 我国《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600—2018)规定了保护人体健康的建设用地土壤污染风险筛选值和管控值,基本项目包括7种重金属、27 种挥发性有机物和11种半挥发性有机物[10]. 然而,很多污染场地经过治理修复后,仍然存在刺鼻的气味,成为场地再开发过程中面临的难题,由于不同污染地块异味化学物质差异大,种类复杂多样,导致土壤异味污染物的检测和识别存在一定困难. 农药场地土壤环境基质复杂,存在很多非常规污染物,当前关于农药污染地块土壤中异味物质识别的研究较少,已有研究也仅仅是对某个污染地块进行研究,难以体现有机磷这类农药污染地块的异味物质特点,孟洁等[4]对某典型有机磷污染地块进行了异味污染程度调研研究,马妍等[11]针对某有机磷和有机氯复合污染场地进行了异味物质筛查,筛查指标只是考虑了物质浓度和嗅阈值.
异味物质除了硫化氢、氨等少数无机物外,绝大多数为有机物,多数异味物质在非常低的浓度下就会发出较强气味,嗅阈值的体积分数达到10-9[12 − 13]. 本研究以6个典型有机磷农药污染地块为研究对象,采用高分辨质谱法检测土壤中挥发性及半挥发性有机物,综合考虑检出物质的嗅觉阈值、浓度水平、检出率及挥发性等4个指标,建立异味物质综合评分筛选方法,筛选出优控异味物质,以期为农药污染地块异味管控和修复提供科学依据.
有机磷农药污染地块有机物质组成特征与异味物质识别
Composition characteristics of organic matter and identification of odorous substances in organophosphorus pesticide-contaminated land
-
摘要: 农药污染地块异味问题凸显,准确识别异味物质是地块治理修复的重要科学依据. 采用顶空-气相色谱高分辨质谱法对有机磷农药污染地块土壤中的挥发性及半挥发性有机物进行检测,综合检出物质的嗅觉阈值、浓度水平、检出率及挥发性等4个指标,通过综合评分法进行异味物质筛选,并结合异味物质的气味安全等级提出有机磷农药污染地块优控异味物质. 结果表明,有机磷农药污染地块共检出有机污染物354种,其中以烷烯烃、苯系物、卤代烃、含氧有机物以及硫化物为主(占比之和在90%以上). 通过综合评分法筛选出47种潜在异味物质,包括10种含氧有机物、9种含硫有机物、16种芳香化合物、9种卤代烃、2种含氮化合物和1种其他物质(O,O,O-三乙基硫代磷酸酯). 根据47种潜在异味物质气味安全等级评价结果,将气味安全等级为A级的8种物质(乙硫醇、三甲胺、戊醛、四氢呋喃、乙醛、甲硫醇、异丙苯和甲硫醚)列为有机磷污染地块优先控制异味物质.Abstract: The odor pollution in pesticide contaminated sites is prominent, and the accurate identification of odorants provides important scientific basis for site remediation. In the study, a comprehensive scoring method was established and applied to screen odorants in the light of olfactory threshold, concentration, detection rate, and volatility based on the analysis results of volatile and semi volatile organic compounds by headspace-gas chromatography high resolution mass spectrometry in organophosphorus pesticide contaminated sites. The optimal odorants controlled of organophosphorus pesticide contaminated sites were proposed combined with the odor safety grade. A total of 354 organic pollutants were detected in organophosphorus pesticide contaminated sites, among which alkanes, alkenes, aromatic compounds, halogenated compounds, oxygenated compounds, and sulfur compounds were the main pollutants (the sum of which accounted for more than 90%). 47 potential odorants were screened by the comprehensive scoring method, including 10 oxygenated compounds, 9 sulfur compounds, 16 aromatic compounds, 9 halogenated compounds, 2 nitrogen compounds and 1 other compound (O,O,O-Triethylphosphorothioate). According to the results of odor safety grade evaluation of 47 potential odorants, 8 odorants with odor safety grade A (ethanethiol, trimethylamine, pentalaldehyde, tetrahydrofuran, acetaldehyde, methanthiol, isopropylbenzene and dimethyl sulfide) were listed as priority control odorants in organophosphorus pesticide contaminated sites.
-
表 1 各地块基本信息、主要异味区域及样品量
Table 1. Main products and raw materials of different venues
省份
Province地块编号
Land number主要产品
Main products主要异味区域
Main odor areas样品数量
Sample size江苏 A 甲胺磷、草甘膦、精胺、对硫磷、
联苯二氯苄生产区、中间体生产区、危险品储存区、
包装仓库区、污水处理区23 河北 B 辛硫磷、哒嗪硫磷、乙基氯化物 生产区、中间体生产区、危险品储存区、
污水处理区18 天津 C 敌敌畏、对硫磷、甲拌磷、丁硫磷、辛硫磷、杀螟硫磷 生产区、污水处理区、包装仓库区 12 D 氧化乐果、三氯化铝、三氯化磷 生产区、中间体生产区、原辅料仓库 12 山东 E 辛硫磷、毒死蜱、三唑磷、氯化物 生产区、危险品储存区、污水处理区 8 江苏 F 草甘膦、除草剂、疫霜灵、丙溴磷 生产区、污水处理区 6 表 2 物质嗅阈值划分
Table 2. Substance olfactory threshold division
物质分类
Substance category嗅阈值区间
Olfactory threshold interval阈值划分
Threshold partitioning卤代烃 10−1—10 高嗅阈值 烷烯烃 10−1—10 苯系物 10−3—1 中高嗅阈值 酯类 10−3—1 醇类 10−3—10 胺类 10−4—10−2 中低嗅阈值 含硫化合物 10−6—10−3 低嗅阈值 醛类、醚类 10−5—10−3 表 3 检出率前20名的物质
Table 3. Top 20 substances with detection rates
物质
Substance检出率/%
Detection rate物质
Substance检出率/%
Detection rate甲苯 88.89 三氯乙烯 60.00 氯苯 84.44 1,4-二氯苯 60.00 二氯甲烷 82.22 羰基硫 57.78 邻二甲苯 82.22 对乙基甲苯 57.78 对二甲苯 80.00 O,O,O-三乙基硫代磷酸酯 57.78 乙苯 77.78 二氯二氟甲烷 55.56 三氯甲烷 75.56 1,1,2-三氟三氯乙烷 55.56 三氯一氟甲烷 75.56 1,2-二氯乙烷 53.33 苯 71.11 二硫化碳 48.89 间二甲苯 64.44 二乙基二硫 48.89 表 4 典型气味物质
Table 4. Typical odor substances
物质
Substance嗅阈值/(mg·m−3)
Olfactory
threshold检出率/%
Detection
rate最大浓度/
(mg·kg−1)
Maximum
concentration物质
Substance嗅阈值/(mg·m−3)
Olfactory
threshold检出率/%
Detection
rate最大浓度/
(mg·kg−1)
Maximum
concentration羰基硫 1.48×10−1 57.78 0.0035 噻吩 1.90×10−3 17.78 0.0004 甲硫醇 1.50×10−4 17.78 0.0005 乙醛 2.95×10−3 42.22 0.0150 甲硫醚 8.32×10−3 33.33 0.0009 正丁醛 2.16×10−3 6.67 0.0003 乙硫醚 1.00×10−4 20.00 0.0590 戊醛 1.40×10−3 6.67 0.0002 乙硫醇 2.41×10−5 6.67 0.0002 正己醛 1.10×10−3 4.44 0.0010 二硫化碳 7.14×10−1 48.89 0.0581 异丁醛 1.13×10−3 15.56 0.0012 二甲二硫 9.25×10−3 44.44 3.9049 苯甲醛 8.50×10−2 22.22 0.0006 甲基乙基硫 2.20×10−2 15.56 0.0040 甲胺 4.85×10−2 4.44 0.0053 甲基乙基二硫 6.20×10−2 28.89 0.1462 三甲胺 8.44×10−5 6.67 0.3060 二乙基二硫 1.09×10−2 48.89 4.9110 三乙胺 5.40×10−3 4.44 0.0040 二甲基三硫 7.30×10−3 17.78 0.0295 噻吩 1.90×10−3 17.78 0.0004 表 5 筛选指标及赋分标准
Table 5. Scoring criteria for screening indicators
分值
Score嗅阈值/(mg·m−3)1)
Olfactory threshold1)浓度水平/(mg·kg−1)
Concentration level检出率/%
Detection rate挥发性/kPa 2)
Volatility2)1 >100 0—0.1 0—20 <10−5 2 1—100 0.1—1 20—40 10−5—1 3 10−2—1 1.0—10 40—60 1—10 4 10−3—10−2 10—100 60—80 10—100 5 <10−4 >100 80—100 >100 1)嗅阈值数据来源:参考日本测定的223种化学物质嗅阈值数据表[20]和《化合物嗅觉阈值汇编》[21]. 2)挥发性数据来源:本研究采用25 ℃下的蒸气压值表示挥发性大小,查询ChemicalBook、化源网等网站以及数据库、ChemBlink化学品数据库等相关数据库.
1)Source of olfactory threshold data: Refer to the olfactory threshold data table of 223 chemical substances measured in Japan [20] and the “Compilations of odour threshold values in air,water and other media” [21]. .2)Volatility data source: This study used vapor pressure values at 25 ℃ to represent the magnitude of volatility. The data was obtained from websites such as ChemicalBook and Chemsrc, as well as related databases such as ChemiSpider database and ChemBlink chemical database.表 6 综合得分前50名的物质
Table 6. Top 50 substances with comprehensive scores
排名
NO.物质
Substance得分
Scores排名
NO.物质
Substance得分
Scores排名
NO.物质
Substance得分
Scores1 二甲二硫 3.51 18 2-丁醇 2.54 35 1,2,4-三甲苯 2.18 2 乙醛 3.43 19 1,4-二氯苯* 2.53 36 间乙基甲苯 2.15 3 乙硫醚 3.21 20 邻二甲苯* 2.49 37 O,O,O-三乙基硫代磷酸酯 2.13 4 对二甲苯* 3.17 21 甲苯* 2.47 38 2-甲基己烷 2.12 5 乙苯* 3.03 22 二氯甲烷* 2.46 39 三甲胺 2.09 6 甲硫醚 3.01 23 乙硫醇 2.44 40 1,2-二氯苯* 2.08 7 异丁醛 3.00 24 萘* 2.43 41 四氢呋喃 2.07 8 间二甲苯* 2.96 25 邻乙基甲苯 2.43 42 对二乙苯 2.06 9 二硫化碳 2.89 26 间二乙苯 2.42 43 异丁烷 2.05 10 羰基硫 2.83 27 2-丁酮 2.41 44 氯甲烷* 2.05 11 三氯甲烷* 2.71 28 乙酸甲酯 2.37 45 噻吩 2.00 12 乙腈 2.65 29 四氯乙烯* 2.36 46 甲硫醇 1.98 13 苯* 2.64 30 甲基环己烷 2.30 47 1,2-二氯乙烷* 1.95 14 氯苯* 2.63 31 苯甲醛 2.29 48 戊醛 1.95 15 四氯化碳* 2.62 32 1,3,5-三甲苯 2.25 49 正己醛 1.93 16 对乙基甲苯 2.56 33 1,2,3,4-四甲基苯 2.22 50 异丙苯 1.90 17 二乙基二硫 2.55 34 甲基乙基二硫 2.20 注:*表示GB36600中规定的风险管控物质. Note: * indicates the risk control substance specified in GB36600. 气味安全等级
Odor safety level气味安全系数
Odor safety factor注释
NoteA >550 超过90%不敏感的人能够感觉到该物质阈限值浓度下的气味 B 26—550 50%—90%不敏感的人能够感觉到该物质阈限值浓度下的气味 C 1—26 少于50%不敏感的人能够感觉到该物质阈限值浓度下的气味 D 0.18—1 10%—50% 敏感的人能够感觉到该物质阈限值浓度下的气味 E <0.18 少于10%敏感的人能够感觉到该物质阈限值浓度下的气味 表 8 潜在异味物质气味安全等级比较
Table 8. Comparison of odor safety levels of superior controlled substances
序号
No.物质
Substance嗅阈值/(mg·m−3)
Olfactory threshold健康风险阈值/(mg·m−3)
Health risk value气味安全系数
Odor safety factor气味安全等级
Odor safety level1 乙硫醇 2.41×10−5 300 12431419.08 A 2 三甲胺 8.44×10−5 24 284360.19 A 3 戊醛 1.40×10−3 192.24 137314.29 A 4 四氢呋喃 2.40×10−3 300 125000.00 A 5 乙醛 2.95×10−3 45 15254.35 A 6 甲硫醇 1.50×10−4 1 6651.77 A 7 异丙苯 4.51×10−2 268.29 5952.48 A 8 甲硫醚 8.32×10−3 28 3364.77 A 9 间二甲苯 1.94×10−1 50 257.31 B 10 1,3,5-三甲苯 9.12×10−1 228.07 250.02 B 11 2-丁醇 7.28×10−1 165.45 227.27 B 12 二甲二硫 9.25×10−3 2 216.18 B 13 2-丁酮 1.42 300 211.81 B 14 对二甲苯 2.75×10−1 50 181.89 B 15 乙苯 8.06×10−1 100 124.11 B 16 1,4-二氯苯 7.30×10−1 30 41.10 B 17 甲苯 1.36 50 36.84 B 18 乙酸甲酯 5.62 200 35.57 B 19 四氯乙烯 5.70 200 35.08 B 20 邻二甲苯 1.80 50 27.76 B 21 1,2-二氯苯 4.20 50 11.90 C 22 氯苯 4.50 50 11.11 C 23 二硫化碳 7.14×10−1 5 7.00 C 24 乙腈 23.8 30 1.26 C 25 三氯甲烷 20.3 20 0.99 D 26 苯 9.42 6 0.64 D 27 四氯化碳 31.6 15 0.47 D 28 氯甲烷 157 60 0.38 D 29 二氯甲烷 607 200 0.33 D 30 1,2-二氯乙烷 25.0 7 0.28 D 注:健康风险阈值参考GBZ2.1—2019职业危害接触值,该标准中没有的,参考美国政府工业卫生学会(ACGIH)发布的健康风险阈限值.
Note: The health threshold refers to GBZ2.1—2019 occupational hazard exposure values. If not included in this standard, the health risk threshold limit values published by the American Association of Government Industrial Hygiene (ACGIH) should be referred to. -
[1] 刘芬芬, 孙小华, 丁力, 等. 搬迁企业原址场地土壤挥发性有机物污染特征——以北京某搬迁化工厂为例[J]. 城市地质, 2021, 16(1): 18-24. doi: 10.3969/j.issn.1007-1903.2021.01.003 LIU F F, SUN X H, DING L, et al. Characteristics of soil volatile organic compound pollution in the original site of relocated enterprises—A case study of a relocated chemical plant in Beijing[J]. Urban Geology, 2021, 16(1): 18-24 (in Chinese). doi: 10.3969/j.issn.1007-1903.2021.01.003
[2] 章霖之, 王荣俊, 丁倩. 常州某农药生产场地土壤中挥发性有机物污染状况调查[J]. 中国环境监测, 2012, 28(3): 67-71. ZHANG L Z, WANG R J, DING Q. Investigation of volatile organic compounds contamination in soil of a pesticide production site in Changzhou[J]. Environmental Monitoring in China, 2012, 28(3): 67-71 (in Chinese).
[3] 张孝飞, 邓绍坡, 龙涛, 等. 农药污染场地修复过程中近地面大气气态污染物含量变化特征及影响因素[J]. 南京农业大学学报, 2017, 40(3): 481-487. ZHANG X F, DENG S P, LONG T, et al. Variation characteristics and influence factors of near ground atmospheric gaseous pollutants during the remediation process of typical pesticide site[J]. Journal of Nanjing Agricultural University, 2017, 40(3): 481-487 (in Chinese).
[4] 孟洁, 王静, 肖咸德, 等. 有机磷农药污染地块异味污染调查与健康风险评估[J]. 岩矿测试, 2021, 40(6): 907-918. MENG J, WANG J, XIAO X D, et al. Investigation of the major odor contributors and health risk assessment in the organophosphorus pesticide field[J]. Rock and Mineral Analysis, 2021, 40(6): 907-918 (in Chinese).
[5] AKDENIZ N, JACOBSON L D, HETCHLER B P. Health risk assessment of occupational exposure to hazardous volatile organic compounds in swine gestation, farrowing and nursery barns[J]. Environmental Science Processes & Impacts, 2013, 15(3): 563-572. [6] 谭冰, 王铁宇, 李奇锋, 等. 农药企业场地土壤中苯系物污染风险及管理对策[J]. 环境科学, 2014, 35(6): 2272-2280. TAN B, WANG T Y, LI Q F, et al. Risk assessment and countermeasures of BTEX contamination in soils of typical pesticide factory[J]. Environmental Science, 2014, 35(6): 2272-2280 (in Chinese).
[7] US EPA. Superfund remedy report fifteenth edition[M]. Charlestone: Createspace Independent Publishing Platform, 2017: 14. [8] 魏旭. 荷兰土壤污染修复标准制度述评[J]. 环境保护, 2018, 46(18): 73-77. WEI X. Review of soil pollution remediation standards of Netherlands[J]. Environmental Protection, 2018, 46(18): 73-77 (in Chinese).
[9] 马杰. 我国挥发性有机污染地块调查评估中存在的问题及对策建议[J]. 环境工程学报, 2021, 15(1): 3-7. MA J. Problems and suggestion for investigation and risk assessment of sites impacted by volatile organic compounds in China[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 3-7 (in Chinese).
[10] 中华人民共和国生态环境部, 国家市场监督管理总局. 土壤环境质量 建设用地土壤污染风险管控标准: GB 36600—2018[S]. 北京: 中国环境出版集团, 2019. Ministry of Ecology and Environment of the People’s Republic of China, State Administration for Market Regulation. Soil environmental quality Risk control standard for soil contamination of development land: GB 36600—2018[S]. Beijing: China Environmental Science Press, 2019(in Chinese).
[11] 马妍, 郑红光, 史怡, 等. 典型农药污染地块土壤中异味物质的筛查与分布特征研究[J]. 环境科学研究, 2022, 35(6): 1482-1489. MA Y, ZHENG H G, SHI Y, et al. Screening and distribution characteristics of odorous substances in soil of typical pesticide-contaminated site[J]. Research of Environmental Sciences, 2022, 35(6): 1482-1489 (in Chinese).
[12] KAMARULZAMAN N H, LE-MINH N, FISHER R M, et al. Quantification of VOCs and the development of odour wheels for rubber processing[J]. Science of the Total Environment, 2019, 657: 154-168. doi: 10.1016/j.scitotenv.2018.11.451 [13] CAPELLI L, SIRONI S, ROSSO R, et al. Measuring odours in the environment vs. dispersion modelling: A review[J]. Atmospheric Environment, 2013, 79: 731-743. doi: 10.1016/j.atmosenv.2013.07.029 [14] 中华人民共和国生态环境部. 建设用地土壤污染风险管控和修复监测技术导则: HJ 25.2—2019[S]. 2019. Ministry of Ecology and Environment of the People’s Republic of China. Technical guidelines for monitoring during risk control and remediation of soil contamination of land for construction: HJ 25.2—2019[S]. 2019(in Chinese).
[15] 农药污染地块土壤异味物质识别技术指南: T/LLHT 027—2021[S]. [16] 翟增秀, 孟洁, 刘绿叶, 等. 某复合化工污染场地不同介质有机物污染特征层次分析[J]. 环境化学, 2022, 41(5): 1603-1615. doi: 10.7524/j.issn.0254-6108.2021012502 ZHAI Z X, MENG J, LIU L Y, et al. Hierarchical analysis of the pollution characteristics of organic matter in different media in a compound chemical contaminated site[J]. Environmental Chemistry, 2022, 41(5): 1603-1615 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021012502
[17] 廖高明, 马杰, 谷春云, 等. 污染场地卤代烃非生物自然衰减研究进展[J]. 环境科学研究, 2021, 34(3): 742-754. LIAO G M, MA J, GU C Y, et al. Research progress on abiotic natural attenuation of halogenated hydrocarbons at contaminated sites[J]. Research of Environmental Sciences, 2021, 34(3): 742-754 (in Chinese).
[18] 张焱鑫, 孙佳薇, 席劲瑛, 等. 农药行业污染场地挥发性有机物释放能力及其评价方法研究[J]. 环境科学学报, 2022, 42(3): 450-456. ZHANG Y X, SUN J W, XI J Y, et al. Estimation of VOCs emission capacity of contaminated sites in the pesticide industry[J]. Acta Scientiae Circumstantiae, 2022, 42(3): 450-456 (in Chinese).
[19] 陈烨, 刀谞, 谭丽, 等. 顶空固相微萃取-气相色谱法测定水中5种农药残留量[J]. 理化检验(化学分册), 2015, 51(8): 1174-1177. CHEN Y, DAO X, TAN L, et al. GC determination of residual amounts of 5 pesticides in water with headspace solid-phase microextraction[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2015, 51(8): 1174-1177 (in Chinese).
[20] NAGATA Y. Measurement of odor threshold by triangle odor bag method[R]. Tokyo: Japan Environmental Sanitation Center, 2003: 118-127 [21] 荷)里奥·范海默特著. 化合物嗅觉阈值汇编[M]. 北京: 科学出版社, 2018. VAN GEMERT L J. Compilations of odour threshold values in air, water and other media[M]. Beijing: Science Press, 2018(in Chinese).
[22] 陈秋宇, 吴应琴, 雷天柱, 等. 基于Py-GC-MS/MS技术的高寒草原土壤有机质不同组分指纹特征研究[J]. 生态学报, 2018, 38(8): 2864-2873. CHEN Q Y, WU Y Q, LEI T Z, et al. Study on the fingerprints of soil organic components in alpine grassland based on Py-GC-MS/MS Technology[J]. Acta Ecologica Sinica, 2018, 38(8): 2864-2873 (in Chinese).
[23] 王雪悦. 崇明岛东部不同年代围垦区土壤有机质稳定性及其制约机制[D]. 上海: 华东师范大学, 2022. WANG X Y. Stability of soil organic matter and its controlling mechanism for typical areas reclaimed in different ages in eastern Chongming Island[D]. Shanghai: East China Normal University, 2022 (in Chinese).
[24] 李伟芳. 异味污染的感官表征与暴露评估方法[M]. 北京: 化学工业出版社, 2020. LI W F. Sensory characterization and exposure assessment method of odor pollution[M]. Beijing: Chemical Industry Press, 2020(in Chinese).