-
液晶单体(liquid crystal monomers,LCMs)是一类人工合成的具有独特光学各向异性的有机化学品[1],现已成为制造液晶显示器(liquid crystal displays,LCDs)的关键材料[2],广泛应用于通讯设备、计算机及家用电器等领域[3]. LCMs通常含有一个二苯基骨架,苯环上氢原子被氰基、氟、氯或溴基等官能团取代[4, 5];根据官能团不同,主要可分为联苯及其类似物(biphenyls and analogues,BAs)、氰基联苯及其类似物(cyanobiphenyls and analogues,CBAs)和氟化联苯及其类似物(fluorinated biphenyls and analogues,FBAs)等(见图1)[2]. 目前,已有研究发现 LCMs 是具有潜在持久性、生物累积性和毒性的新型有机污染物[4 − 6]. 因此,LCMs的环境赋存、转化归趋及人体暴露健康风险应引起高度关注.
LCMs通常采用物理填充于LCDs偏光板间[7],在LCDs产品的生产、使用,以及废弃产品的拆解、回收和终端处理过程中,LCMs极易通过挥发或其他方式进入到周围环境中从而对人体健康和生态环境造成威胁[2]. LCMs在灰尘[5, 7]、空气[8]、沉积物[9]、垃圾渗滤液[10]和土壤[11]等多种环境介质中频繁检出. 由于人们80%—90%的时间都在室内环境生活和工作[12],因此室内环境与人体健康有着密切关系. 灰尘具有较大的比表面积且广泛存在,是室内环境污染物的汇,也是反映污染物在室内环境中总体污染状况的良好指示材料[13]. 同时,室外也存在LCMs的污染源,如工业排放、人类活动等,通过各种途径释放出的LCMs沉积于室外灰尘中. 经手-口接触、皮肤接触和呼吸吸入等途径摄入受污染的灰尘而造成人体LCMs暴露[14]. 然而,目前研究大多关注LCMs的环境赋存,对LCMs的人体暴露研究还较有限.
本研究以清远市电子垃圾拆解工人家庭室内灰尘及室外庭院灰尘为研究对象,分析灰尘中9种BAs、8种CBAs和40种FBAs的浓度水平和组成特征,评估研究区域成人和儿童经灰尘摄入、呼吸吸入和皮肤接触途径的LCMs暴露量,相关结果可为人体经灰尘暴露于LCMs的健康风险评价提供基础数据.
-
仪器:气相色谱—三重四极杆串联质谱仪(Gas chromatography-tandem mass spectrometry,GC-MS/MS)(Agilent,美国);2600TH 超声机(上海安谱实验科技,中国);离心机(Thermo Fisher Scientific,美国);涡旋振荡器(Scientific Industries,美国);氮吹仪(Organomation,美国);Milli-Q 超纯水系统(Merck,德国).
标准品:本研究检测的目标化合物基本信息及仪器分析参数见表1.
试剂:正己烷(n-Hex)、二氯甲烷(DCM)、甲苯、丙酮(ACE)、乙酸乙酯(EtAC)、异辛烷(ISO)和甲苯(TOL)均为色谱纯,购自上海安谱实验科技公司(中国).
其他材料:DB-5MS毛细管色谱柱(30 m×0.25 mm,0.25 µm)(Agilent,美国);10mL和15mL玻璃旋盖离心管(目盛付,日本);Supelco Florisil® ENVI 固相萃取柱(SPE;500 mg,3 mL)(Supelco,美国);巴斯德吸管(Witeg Labortechnik GmbH,德国);称量纸(上海伯奥生物科技,中国).
-
2023年3月,征集24户从事电子垃圾拆解工作的家庭,收集室内灰尘(n=24)和庭院灰尘(n=7)共31例,其中7户带庭院的家庭从事家庭作坊式的电子垃圾拆解活动,三处规模化电子垃圾拆解地与各采样点家庭距离0.8—8 km,具体采样点详见图2. 样品收集参考文献中报道的方法[15- 16],简述如下:室内室外地面灰尘使用真空吸尘器配套尘袋收集,室内桌面和柜顶等易积累灰尘的地方,使用软毛刷和小塑料簸箕采集积尘,避开厨房和卫生间等可能有大量生活垃圾的区域;室外灰尘采集以庭院作为家庭作坊式电子拆解场所的降尘. 在庭院进行电子垃圾拆解活动,工作场所形似长方体,采用等距采样法,以工作台为中间样方,向两边扩展1—3个等距样方,按样品需要在等距样方前1 m范围内进行采样,采样前为连续多日晴朗天气;为避免交叉污染,设备连接处在使用前后均用肥皂水和清水清洗,并用ACE浸湿的一次性用品擦拭干净,每次采样后均更换软毛刷. 每份样品采集量约2—5 g. 采集的灰尘样本均用干净的锡箔纸包裹,放入密封袋包装;编号运回实验室后,过100目(150 μm孔径)不锈钢筛,去除毛发、絮状物及粗颗粒;过筛后的样品用干净的锡箔纸包裹,置于密实袋内保存于−20 ℃冰箱直至分析.
-
灰尘中目标化合物的分析前处理参考Tang[17]和Cheng[7]等的研究,简述如下:称取20 mg灰尘样品至干净的10 mL玻璃离心管中,加入20 μL LCMs的混合内标(BPh-d10,PCB82和PCB141,PCB198,500 ng·mL−1),然后加入2.5 mL n-Hex和 ACE(3:1,V/V)混合溶液及0.5 mL TOL,以
1000 r·min−1涡旋振荡1 min,静置过夜;样品超声(100 Hz,25℃)5 min后,以3000 r·min−1的转速离心3 min;萃取液转移至10-mL玻璃管中;重复以上萃取步骤 2 次,将萃取液合并、氮吹至近干后重新溶解于 1 mL n-Hex. 浓缩液过Florisil® ENVI SPE柱净化:预先用4 mL ACE、6 mL EtAC和6 mL n-Hex依次活化SPE柱;上样后,用8 mL n-Hex/DCM(1∶1,V/V)洗脱目标化合物;将洗脱液至温和的氮气流下氮吹至近干,加入100 μL异辛烷定容,转移至进样瓶中,-20℃保存待分析. -
采用GC-MS/MS 检测LCMs,采用电子轰击源(Electron impact ion source,EI),多重反应监测(MRM)模式;使用 DB-5MS 毛细管色谱柱(30 m×0.25 mm,0.25 μm)分离目标化合物. 升温程序为:初始温度100℃,保持1 min,首先以10℃·min−1升温至200℃;再以3℃·min−1升温至240℃,保持 1 min;最后以15℃·min−1 升温至300℃,保持 16 min. 采用不分流进样,进样量为1 μL. 目标化合物及内标的质谱信息见表1.
-
玻璃器皿使用前,均用马弗炉(450℃)焙烧4 h,以消除所有潜在的污染. 为保证检测方法可行性及分析过程的质量控制,对目标化合物进行了空白、空白加标和基质加标实验. 采用与样品制备相同的方法分析3个空白样品、3个基质样品(基质为普通室内灰尘混合样品)、3个空白加标样品和3个基质加标样品. 目标化合物和内标化合物的回收率分别在66.5%—143%和61.6%—82.0%之间;方法精密度采用相对标准偏差(RSD)评估,均小于10%. 实验过程中,每6个灰尘样品增加1个流程空白样品(n=5),以评估实验流程的可能污染. 空白样品中,仅检出少量2OCB、DMPMB、BDPrB、PCTB、DPrCB、TrPrB、TPeCB、EFPT、EDPB、DPrBB和EDPB;样品中目标物浓度均需扣除空白样品的平均浓度. 各LCMs采用不少于6个点的校正曲线进行定量,标准曲线回归方程相关性系数r≥0.995. 方法定量限(Limits of quantification,LOQs)设为流程空白样品中的平均浓度加上3倍标准偏差;对于空白样品中未检出的化合物,其LOQ定义为10倍信噪比(S/N)的浓度. BAs、CBAs和FBAs的LOQ范围分别为
0.000267 —0.382、0.00106 —1.08、0.000137 —4.34 ng·g−1,各LCMs的LOQs详见表2. -
采用SPSS 22 for Windows 软件(SPSS,Inc.,USA) 对检出率大于50%的化合物进行统计分析,对浓度低于检出限的化合物赋值为LOD/2,使用Mann–Whitney检验分析室内和庭院灰尘中LCMs的浓度水平,使用Kruskal-Wallis H检验分析成人和儿童经摄入、呼吸吸入和皮肤接触暴露量的差异,并Spearman秩相关分析进行污染物浓度的相关性分析.
-
灰尘暴露是各种污染物暴露于人体的重要途径,因此,参考Zhang等[18]的报道,对于本研究灰尘中所检出的LCMs,通过公式(1—3)评估当地居民经灰尘摄入、吸入和皮肤接触途径的LCMs日估计摄入量(Estimated Daily Intake,EDI,ng·kg−1·d−1),
式中,EDI ing为通过灰尘摄入的污染物的量(ng·kg−1·d−1);C:灰尘样品中LCMs浓度(ng·g−1);IngR:摄入率,成人(0.02 g·d−1)儿童(0.05 g·d−1);EF:一天暴露频率,成人(室内19.3 h·d−1,室外4.68 h·d−1),儿童(室内21.3 h·d−1,室外1.78 h·d−1);BW:成人(70 kg)和儿童的平均体重(15 kg)[18].
式中,EDI inh为通过灰尘吸入污染物的量(ng·kg−1·d−1);InhR:吸入率,成人(15.7 m3·d−1),儿童(10.1 m3·d−1);PEF:颗粒排放因子(1.36 × 106 m3·g−1)[18].
式中,EDI der为通过皮肤接触摄入的污染物(ng·kg−1·d−1);SA:成人(
4350 cm2)和儿童(1600 cm2)的皮肤接触面积;SAF:灰尘皮肤附着系数,成人(7×10−5g·cm−2),儿童(2×10−4g·cm−2);DAF:皮肤吸收系数(0.13)[18].使用美国环境保护署[19]建立健康风险评估模型,进行LCMs经灰尘暴露的健康风险评价(式5):
式中,HQ(人体健康风险系数,Hazard quotient)为非致癌风险熵,无量纲,表示化合物的非致癌风险;EDI为经摄入、吸入和皮肤接触途径摄入的LCMs总和;由于目前尚无LCMs化合物的每日最高允许摄入的参考剂量,因此参考Yang等[20]的研究,使用每日可容忍摄入量(Tolerable Daily Intake,TDI)进行部分污染物的健康风险评价.
-
除2OCB、BDPrB、DFEPBC、TrPeB、DPeBB和FPePrB外,其余51种化合物,包括9种BAs、7种CBAs和35种FBAs,在灰尘样品中均有检出(表3),表明LCMs在室内和室外灰尘中广泛存在.
室内和庭院灰尘中LCMs浓度范围分别为ND—
1750 ng·g−1(中值427 ng·g−1)和388—3310 ng·g−1(中值804 ng·g−1)(表3);Mann–Whitney U检验结果显示,庭院灰尘中LCMs浓度>室内灰尘(P < 0.05). 研究表明,室内环境中含LCDs的电器和电子产品在使用过程中的释放是LCMs的重要来源[18],且由于室内环境空间较为有限,空气交换流通较差,室内环境更易于污染物富集[21 − 23]. 因此,室内环境中LCMs浓度往往高于室外. 但在本研究中,庭院中进行的电子垃圾拆解可能是灰尘中LCMs的主要来源,庭院灰尘中LCMs可能通过空气流通和沉降等途径进入室内环境中;此外,相较于庭院,室内环境中更频繁的清洁也可能导致庭院灰尘中污染物浓度高于室内灰尘[24].由于研究地区室内采样点大多为普通住宅室内,室外采样点为家庭式作坊的电子垃圾拆解场所. 因此,将室内灰尘中LCMs水平与其他普通室内环境相比,本研究室内灰尘中LCMs浓度高于我国南京(0.13—
2213 ng·g−1)[5]、北京(4.33—121 ng·g−1)[20]和一项全国性研究中室内、室外、咖啡店和手机维修店灰尘中LCMs水平(中值:41.6、94.7、106、171 ng·g−1)[18]. 可能本研究室内灰尘中LCMs的来源除室内环境中含LCDs的各种电器和电子产品释放外,还有来自庭院电子垃圾拆解的释放. 与其他规模化电子垃圾拆解场所的LCMs浓度进行对比,本研究庭院灰尘中LCMs浓度远低于废旧显示屏拆解车间内灰尘中LCMs浓度(21600 —354000 ng·g−1)[7],可能家庭作坊式较于规模化电子垃圾拆解地,其拆解规模较小有关. 此外,本研究的家庭作坊均在庭院中进行电子垃圾拆解,室外环境灰尘中的污染物易随着大气运输和稀释作用扩散,这也是导致庭院灰尘中LCMs浓度偏低的原因之一. 虽然本研究室内环境的LCMs浓度较庭院更低,但室内灰尘中检出的LCMs种类更多(室内49种;庭院48种),以及人们大部分时间都在室内活动[12],因此,应注意室内环境中LCMs的广泛赋存及人群的暴露风险. -
如图3所示,室内灰尘中占比最高的LCMs为PVB(26.3%),其次为MOPB(18.5%)、EBDMB(13.0%)、PPB(12.4%)、BVBC(10.1%)、DFPVBC(5.35%)、EDPPB(2.37%)和EBMB(1.14%),以上化合物占室内灰尘ΣLCMs的近90%. 除MOPB和DFPVBC外,其他LCMs的组成特征与Liang等[2]报道的废旧LCDs面板中和Shen等[8]报道的电子垃圾拆解工业园区的空气中LCMs组成基本一致,以上化合物均是主要的LCMs单体. 庭院灰尘中含量占比最高的LCMs为PVB(19.8%),其次分别为MOPB(13.5%)、DFPVBC(12.4%)、EBDMB(12.3%)、PPB(7.52%)、EBMB(5.68%)、MPhBB(5.51%)、EDPB(3.04%)、BVBC(2.85%)、EDPBB(1.52%)和EPB(1.38%),其LCMs组成与室内灰尘中的组成特征大致相同,但个别LCMs占比远高于室内,如MPhBB和EDPB. 推测本研究中室内和庭院灰尘中LCMs可能具有相似的来源,即电子垃圾拆解,但由于室内和室外不同的环境条件(光照、雨淋、大气运输等)[25]和各单体不同的持久性[5],导致室内室外灰尘中LCMs的环境行为过程不完全相同[26].
如图4所示,MOPB、BVBC、PPB、MPB、EBMB、EPB、3CHB、4CB、EDPrB、DFPVBC、EBDMB、DTMDPB、TePT、DPeCB、EDPBB、PFPT和TPrBB这17种LCMs的室内灰尘浓度与庭院浓度之间存在显著的正相关关系(r = 0.463—0.795,P < 0.05),表明室内和庭院灰尘中LCMs具有相似的来源和释放途径;同时,TPrBB与MPB、3CHB与MOPB、EDPeB与BVBC和3CHB、EDPrB与DFPVBC的室内灰尘浓度与庭院浓度之间存在显著的负相关关系(r = -0.572—-0.825,P < 0.05),表明室内和庭院灰尘中LCMs还有其他来源,是多种污染源交汇的结果[27].
已证实PVB、EBDMB、PPB、BVBC、EDPPB、EBMB、EDPB和EPB为各类LCDs面板中主要的LCMs[2, 7],在灰尘[7]、沉积物[9]和大气颗粒物[8]中均有较高的检出率及浓度. 在Liang等[2]的研究中,MOPB仅在某些品牌的废旧电脑LCDs面板中检测到,说明MOPB可能仅应用于某些特定类型的LCDs面板. 但在本研究中,MOPB在96.8%的灰尘样品中有检出,研究地区的居民使用的LCDs产品或拆解的电子垃圾类型不同可能是造成这个差异的主要原因之一. DFPVBC在超45%的样品中有检出,目前有关DFPVBC的研究很少,尚无有关环境介质中DFPVBC的报道,其仅在Li等[28]报道的电子垃圾拆解职业人群和普通人群血清中检出. 目前关于LCMs的各研究所检测的目标LCMs不同,也可能是以往研究在环境基质中未检测到DFPVBC的原因之一. PVB、EBDMB、PPB、BVBC、EDPPB、EBMB、EDPB和EPB在本研究灰尘样品中广泛存在,且值得注意的是,以上在本研究样品中占主导地位的化合物均属于BAs和FBAs类,其比例远高于CBAs类(图5);该结果与目前文献报道结果一致[2, 8],表明它们的应用更为广泛. 因此,更应关注BAs和FBAs在环境中的广泛污染与人体暴露风险.
-
对于灰尘中所检出的LCMs,按公式(1)—(4)评估其在室内和庭院灰尘中成人和儿童经摄入(EDI ing)、吸入(EDI inh)和皮肤接触(EDI der)等3种途径的每日暴露量(EDI). 如图6所示,P50暴露情景下,成人在室内和庭院中的EDI无差异(Mann–Whitney U检验,P > 0.05),这与本研究庭院灰尘中污染物浓度较高有关. 室内和庭院中,儿童的EDI P50均高于成人(Mann–Whitney U检验,P < 0.05),这可能与儿童的行为习惯相关,特别是对于处于蹒跚学步阶段的儿童有更频繁的手-口接触行为[18, 29],因此更容易通过接触灰尘暴露于室内的污染物中[30],这表明LCMs对儿童可能有更多的潜在健康危害[18].
见表4,成人在室内和庭院中经摄入、吸入和皮肤接触途径摄入LCMs的EDI大小分别为:EDI der> EDI ing> EDI inh(Kruskal-Wallis H检验,P < 0.05);儿童经不同途径暴露的EDI大小分别为:EDI der > EDI ing,EDI inh > EDI ing(Kruskal-Wallis H检验,P < 0.05),可见3种暴露途径中,摄入和皮肤接触对摄入量的贡献都远高于吸入途径,表明摄入和皮肤接触是人体摄入LCMs主要途径. 这与Zhang等[18]报道的关于LCMs的研究结果一致,即LCMs通过摄入和皮肤接触的暴露风险高于通过吸入途径暴露.
危险熵结果详见表5,成人和儿童的总危险熵分别为
0.000934 和0.00330 ,对成人和儿童危险熵贡献较大的化合物为EDPBB、BBDB、EDPeB和FPCB. 总体而言,成人和儿童暴露Σ10LCMs的危险熵均小于1,表明LCMs通过灰尘摄入、吸入和皮肤接触的非致癌风险在可接受范围内. 需要指出的是,由于尚无全面的LCMs健康风险评估参数,因此本文只进行了10种LCMs的健康风险评价,这可能远低估了LCMs真实的暴露风险;同时,除灰尘暴露外,LCMs还可通过空气等介质进入到人体内[9],因此需开展进一步的研究,以全面评估环境中LCMs的潜在暴露和健康风险. -
本研究结果显示,所有灰尘中均检出LCMs,室外灰尘中LCMs显著高于室内(P<0.05),表明电子垃圾拆解是LCMs潜在的污染来源;室内外灰尘中LCMs的组成无显著差异,说明室内外灰尘中LCMs具有相似的来源;在室内与室外环境中,成人暴露量均低于儿童,表明LCMs可能对儿童有更多的不良影响;10种LCMs的健康风险评价结果显示,非致癌风险熵均<1,说明这些污染物通过灰尘暴露的非致癌风险在可接受范围内. 本文调查了清远市电子垃圾拆解区家庭场所灰尘中LCMs的浓度、组成特征和人体暴露评估,相关结果可为人体经灰尘暴露于LCMs的健康风险评价提供基础数据.
电子垃圾拆解地区家庭室内外灰尘中液晶单体的污染特征
The pollution characteristics of liquid crystal monomer in indoor and outdoor dust of households in an e-waste dismantling area
-
摘要: 液晶单体(LCMs)是一类具有潜在持久性、生物累积性和毒性的有机污染物,对环境和人体具有潜在的不良影响. 然而,目前关于LCMs的环境污染特征仍缺乏深入认识. 本研究以清远市电子垃圾拆解工人家庭为研究对象,采集室内(n =24)和庭院(n =7)灰尘,分析了57种CMs的污染特征(包括9种联苯及其类似物(BAs)、8种氰基联苯及其类似物(CBAs)和40种氟化联苯及其类似物(FBAs)). 结果显示,大多数LCMs在室内和庭院灰尘均有广泛检出,其浓度范围分别为ND—
1750 ng·g−1和388—3310 ng·g−1;室内和庭院灰尘中LCMs组成无明显差别,说明室内外灰尘中LCMs具有相似的来源. 所有灰尘样品中,BAs和FBAs的含量均远高于CBAs,应重视BAs和FBAs的潜在健康风险. 在室内和庭院中,成人和儿童通过灰尘暴露的LCMs日平均暴露量分别为8.22、65.1、3.75、10.2 ng·kg−1·d−1,儿童暴露量远高于成人. 10种LCMs风险评估结果显示,成人和儿童经灰尘暴露LCMs的非癌症风险熵(HQ) <1,表明通过灰尘暴露的LCMs健康风险在可接受范围内.Abstract: Liquid crystal monomers (LCMs) are a class of organic pollutants with potentially persistent, bioaccumulative, and toxic properties, which would pose adverse effects on the environment and biotas. However, the occurrence and pollution characteristics of LCMs in the environment remain scarce. In this study, household dust was collected from indoor (n=24) and yard(n=7) from an e-waste dismantling area in Qingyuan City, and the levels of 9 biphenyls and analogues (BAs), 8 cyanobiphenyls and analogues (CBAs) and 40 fluorinated biphenyls and analogues (FBAs) in dust were analyzed. The results showed that most LCMs were detected in both indoor and yard dust, with concentrations ranging from ND (not detected)—1750 ng·g−1 and 388—3310 ng·g−1, respectively, no significant difference was found in the compositions of LCMs between indoor and yard dust, suggesting that indoor and outdoor dust have similar sources of LCMs. The relative compositions of BAs and FBAs in all dust samples were much higher than CBAs, and the potential health risks of BAs and FBAs should be highly concerned. In indoor and yard environments, the daily intakes of LCMs via dust were 8.22, 65.1, 3.75, and 10.2 ng·kg−1·d−1 for adults and children, respectively, with children exposure dose far higher than that of adults. Risk assessment of 10 LCMs showed that the hazard quotients (HQ) for adults and children exposed to LCMs via dust was <1, indicating that the health risk of LCMs via dust exposure were within acceptable ranges.-
Key words:
- Liquid crystal monomers /
- e-waste dismantling /
- house dust /
- human exposure.
-
-
表 1 目标化合物基本信息及质谱参数
Table 1. Basic information and MS parameters for target compounds
中文全称
Chinese Full Name英文全称
Full name in English简称
AbbreviationCAS号
CAS Nos分子式
Formula分子量
MWa定量离子
MQb碰撞能
CEc定性离子
MCd碰撞能CEc 保留时间
RTe联苯及其类似物(Biphenyls/bicyclohexyls and Analogs,BAs) 反,反-4-丙基-4'-乙烯基双环己烷 1,1'-Bicyclohexyl,4-ethenyl-4'-propyl-, trans,trans PVB(3VbcH) f 116020 -44-1C17H30 234.42 205.1/81.0 10 234.1/109.0 10 10.930 1-[(反式,反式)-4-乙烯基[1,1-联环己烷]-4-基]-4-甲基苯 trans,trans-4-(4-Methylphenyl)-4'-vinylbicyclohexyl EBMB(MePVbcH) f 155041 -85-3C21H30 282.463 118.1/117.1 10 282.1/157.1 10 19.663 反式-4-丙基环己基-4'-乙基联苯 trans-4-ethyl-4'-(4-propylcyclohexyl)-1,1'-biphenyl EPB(3cH2B) f 84540 -37-4C23H30 306.484 306.1/193.1 20 306.1/221.1 10 26.304 反,反-4-丁基-4'-乙烯基联环己烷 (trans,trans)-4-Butyl-4'-ethenyl-1,1'-bicyclohexyl BVBC 153429 -47-1C18H32 248.447 219.1/81.0 15 248.2/109.1 10 12.181 反,反-4'-(3-丁烯基)-4-(对甲苯基)双环己烷 1-[(trans,trans)-4'-(3-Buten-1-yl)[1,1'-bicyclohexyl]-4-yl]-4-methyl-benzene MPhBB 129738 -42-7C23H34 310.516 118.1/117.1 10 310.2/118.1 15 24.386 反,反-4-[(E)-1-1-丙烯基]-4'-丙基联环己烷 (trans,trans)-4-(1E)-1-Propen-1-yl-4'-propyl-1,1'-bicyclohexyl PPB(Pe3bcH) f 279246 -65-0C18H32 248.447 248.2/123.1 10 205.1/81.0 10 12.341 反式,反式-4'-对甲苯基-4-丙基-双环己基 4-(4-Methylphenyl)-4'-propyl-1,1'-bi (cyclohexyl MPCB 84656 -75-7C22H34 298.505 118.0/117.1 10 298.2/118.1 10 22.085 4'-甲基-4-戊基联苯 4-Methyl-4'-pentylbiphenyl MPB(5MeB) f 64835 -63-8C18H22 238.367 181.1/165.0 20 238.1/181.1 15 14.327 反式,反式-4-丙基-4'-甲氧基-双环己基 trans,trans-4-Propyl-4'-methoxybicyclohexyl MOPB(MeO3bcH) f 97398 -80-6C16H30O 238.409 163.1/81.0 10 206.2/123.1 10 11.512 氰基苯及其类似物(cyano biphenyls and Analogs, CBAs) 4-氰基-4'-乙氧基联苯 4-cyano-4'-ethoxybiphenyl 2OCB 58743 -78-5C15H13NO 223.27 195.0/166.0 15 223.1/195.1 10 15.320 4-丙氧基-4'-氰基联苯 4'-Propoxy-4-biphenylcarbonitrile 3OCB 52709 -86-1C16H15NO 237.296 237.1/195.1 10 195.0/166.0 15 17.065 4-[反式-4-[(E)-1-丙烯基]环己基]苯腈 trans-4-[4-[1-(E)-propenyl]cyclohexyl]benzonitrile 3eCHB 96184 -40-6C16H19N 225.329 168.0/153.0 20 225.1/168.1 10 13.710 4-正-丁基-4-氰基联苯 4-Butyl-4’-cyanobiphenyl 4CB 52709 -83-8C17H17N 235.324 235.1/192.0 15 192.0/165.0 20 16.499 反式-4-(4-丙基环己基)苯腈 4-(4-Propylcyclohexyl)benzonitrile 3CHB 61203 -99-4C16H21N 227.345 129.1/102.0 15 227.1/129.0 15 13.627 4-(反-4-丁基环己基)苯甲腈 4-(trans-4-Butylcyclohexyl)benzonitrile 4CHB 61204 -00-0C17H23N 241.371 129.0/102.1 15 241.1/129.0 15 15.314 4-(4-乙基环己基)氰苯 4-(4-Ethylcyclohexyl)benzonitrile EtCBN 73592 -81-1C15H19N 213.318 213.1/129.0 20 213.1/103.0 20 12.260 对氰基辛氧基联苯 4'-(Octyloxy)-4-biphenylcarbonitrile 8OCB 52364 -73-5C21H25NO 307.429 195.1/166.0 20 307.2/195.1 10 27.749 氟化联苯及其类似物(fluorinated biphenyls and analogs, FBAs) 4''-乙基-2'-氟-4-丙基-1,1':4',1''-三联苯 4''-Ethyl-2'-fluoro-4-propyl-1,1':4',1''-terphenyl EFPT(2F3T) f 95759 -44-7C23H23F 318.427 318.1/289.1 20 289.1/274.1 25 27.323 反,反-4'-丙基-4-(3,4,5-三氟苯基)双环己烷 1,2,3-Trifluoro-5-[(trans,trans)-4'-propyl[1,1'-bicyclohexyl]-4-yl]benzene TPrCB 131819 -23-3C21H29F3 338.45 158.1/132.0 20 338.1/203.0 5 19.553 4'-[(反式,反式)-4'-乙基[1,1'-双环己基]-4-基]-3,4,5-三氟-1,1'-联苯 4'-[(trans,trans)-4'-Ethyl[1,1'-bicyclohexyl]-4-yl]-3,4,5-trifluoro-1,1'-biphenyl EBCTFB 137529 -40-9C26H31F3 400.52 399.8/233.7 10 399.8/399.8 10 30.222 反,反-4-(3,4-二氟苯基)-4'-丙基双环己烷 4-(3,4-Difluoro-phenyl)-4'-propyl-bicyclohexyl DPrCB 82832 -57-3C21H30F2 320.46 140.1/114.1 25 320.1/140.1 20 20.063 1-(反式,反式-4-丙基双环己基-4’-乙基)-3,4-二氟苯 4-[2-(3,4-Difluorophenyl)ethyl]-4'-propyl-1,1'-bi(cyclohexyl) DFEPBC 107215 -66-7C23H34F2 348.513 348.2/128.0 5 348.2/347.8 5 24.332 反,反-4'-丙基-4-(4-三氟甲氧基苯基)双环己烷 trans,trans-4'-Propyl-4-(4-trifluoromethoxyphenyl)bicyclohexyl PCTB(tFMeO-3bcHP)f 133937 -72-1C22H31F3O 368.476 188.1/119.1 15 368.1/188.1 15 19.465 3,4-二氟-4'-(反式-4-丙基环己基)联苯 3,4-Difluoro-4'-(trans-4-propylcyclohexyl)biphenyl DPrB 85312 -59-0C21H24F2 314.412 314.1/216.1 10 216.1/201.1 25 21.086 1-[4-(4-丁基环己基)环己基]-4-乙氧基-2,3-二氟-苯 1-[4-(4-butylcyclohexyl)cyclohexyl]-4-ethoxy-2,3-difluoro-benzene BCEDB(2OdFP4bcH) f 473257 -15-7C24H36F2O 378.539 184.1/156.0 5 378.0/184.1 5 28.254 1-乙氧基-2,3-二氟-4-(反-4-丙基环己基)苯 trans-1-Ethoxy-2,3-difluoro-4-(4-propyl-cyclohexyl)-benzene EDPrB(2O3cHdFP) f 174350 -05-1C17H24F2O 282.369 282.1/169.1 25 156.0/127.1 25 13.178 1,2,3-三氟-5-[2-氟-4-(4-丙基苯基)苯基]苯 1,2,3-trifluoro-5-[2-fluoro-4-(4-propylphenyl)phenyl]benzene TePT 205806 -87-7C21H16F4 344.345 344.1/315.1 25 315.1/275.0 30 21.261 反,反-4-(3,4-二氟苯基)-4'-戊基二环己烷 trans,trans-4-(3,4-Difluorophenyl)-4'-pentylbicyclohexyl DPeCB 118164 -51-5C23H34F2 348.513 140.0/114.1 25 348.1/140.1 10 24.861 反,反-4''-(4-乙氧基-2,3-二氟苯基)-4-丙基-双环己基 trans,trans-4''-(4-ethoxy-2,3-difluoro-phenyl)-4-propyl-bicyclohexyl EDPBB(2OdFP3bcH) f 123560 -48-5C23H34F2O 364.512 184.1/156.0 5 364.1/184.1 5 26.915 4-乙氧基-2,3-二氟-4'-(反-4-丙基环己基)联苯 4'-(trans-4-Propylcyclohexyl)-2,3-difluoro-4-ethoxy-1,1'-biphenyl EDPB(2O3cHdFB) f 189750 -98-9C23H28F2O 358.465 358.1/245.1 20 358.1/330.2 5 27.719 1,2,3-三氟-5-[反-4-[2-(反-4-丙基环己基)乙基]环己基]苯 1,2,3-Trifluoro-5-[trans-4-[2-(trans-4-propylcyclohexyl)ethyl] cyclohexyl]benzene TPrECB 131819 -24-4C23H33F3 366.503 366.1/213.1 5 213.1/145.1 25 24.254 4'-(反式-4-丙基环己基)-3,4,5-三氟联苯 4'-(trans-4-Propylcyclohexyl)-3,4,5-trifluorobiphenyl TrPrB 132123 -39-8C21H23F3 332.403 332.1/247.1 20 234.0/233.1 20 20.313 3,4-二氟-4'-[(反,反)-4'-戊基[1,1'-二环己基]-4-基]联苯 3,4-Difluoro-4'-[(trans,trans)-4'-pentyl[1,1'-bicyclohexyl]-4-yl]biphenyl DPeBB(5bcHdFB) f 136609 -96-6C29H38F2 424.609 424.1/216.1 15 216.1/201.0 20 34.523 反,反-4'-(4'-戊基-双环己基-4-基)-3,4,5-三氟联苯 trans,trans-4'-(4'-Pentyl-bicyclohexyl-4-yl)-3,4,5-trifluorobiphenyl TPeBB 137529 -43-2C29H37F3 442.599 221.1/201.1 20 442.3/234.1 20 33.827 反,反-3,4,5-三氟-4'-(4'-丙基双环己基-4-基)联苯 trans,trans-3,4,5-Trifluoro-4'-(4'-propylbicyclohexyl-4-yl)biphenyl TPrBB 137529 -41-0C27H33F3 414.546 221.1/201.1 25 414.1/234.1 20 31.191 3,4-二氟-4'-[(反,反)-4'-丙基[1,1'-二环己基]-4-基]联苯 3,4-Difluoro-4'-[(trans,trans)-4'-propyl[1,1'-bicyclohexyl]-4-yl]biphenyl DPrBB(3bcHdFB) f 119990 -81-7C27H34F2 396.556 396.2/216.2 15 216.2/201.0 20 31.662 反,反-4'-丁基-4-(3,4-二氟苯基)双环己烷 trans,trans-4-(3,4-Difluorophenyl)-4'-butylbicyclohexyl DBCB 82832 -58-4C22H32F2 334.486 334.1/83.2 15 127.0/101.0 25 22.403 1,2-二氟-4-[反式-4-(反式-4-乙基环己基)环己基]苯 1,2-Difluoro-4-[trans-4-(trans-4-ethylcyclohexyl)cyclohexyl]benzene DECB 118164 -50-4C20H28F2 306.433 140.1/138.9 15 306.1/140.1 10 18.017 反,反-4-(4-氟苯基)-4'-丙基联环己烷 trans,trans-4-(4-Fluorophenyl)-4'-propylbicyclohexyl FPCB 82832 -27-7C21H31F 302.469 122.1/121.1 15 302.1/122.1 15 19.879 反,反-4-(3,4-二氟苯基)-4'-乙烯基双环己烷 trans,trans-4-(3,4-Difluorophenyl)-4'-vinylbicyclohexyl DFPVBC 142400 -92-8C20H26F2 304.417 179.0/178.8 5 304.1/303.8 5 17.847 反式-4-(4-丙基环己基)-4'-氟联苯 trans-4-(4-Propylcyclohexyl)-4'-fluorobiphenyl FPB 87260 -24-0C21H25F 296.422 211.1/196 15 296.1/211.1 10 21.158 1-[4-(4-乙基环己基)环己基]-4-(三氟甲氧基)苯 1-[4-(4-ethylcyclohexyl)cyclohexyl]-4-(trifluoromethoxy)benzene ECTB 135734 -59-7C21H29F3O 354.45 188.0/91.0 30 354.1/188.1 15 17.502 2-氟-4-(反式-4-戊基环己基)-4'-(反式-4-丙基环己基)联苯 2-Fluoro-4-(trans-4-pentylcyclohexyl)-4'-(trans-4-propylcyclohexyl)biphenyl FPePrB 106349 -49-9C32H45F 448.698 448.2/97.0 25 448.3/350.2 30 40.854 1-乙氧基-2,3-二氟-4-(4-戊基环己基)苯 1-ethoxy-2,3-difluoro-4-(4-pentylcyclohexyl)benzene EDPeB 124729 -02-8C19H28F2O 310.422 184.0/156.0 10 310.0/197.0 15 16.540 3,4-二氟-4'-(反式-4-戊基环己基)联苯 3,4-Difluoro-4'-(trans-4-pentylcyclohexyl)biphenyl DPeB 134412 -17-2C23H28F2 342.465 216.1/201.1 25 342.0/216.1 15 25.950 3,4-二氟-4'-(反-4-乙基环己基)联苯 3,4-Difluoro-4'-(trans-4-ethylcyclohexyl)biphenyl DFECB 134412 -18-3C20H22F2 300.385 300.1/228.8 15 300.1/215.8 15 18.983 3,4,5-三氟-1-[反式-4'-(反式-4''-戊基环己基)环己基]苯 3,4,5-Trifluoro-1-[trans-4'-(trans-4''-pentylcyclohexyl)cyclohexyl]benzene TPeCB 137644 -54-3C23H33F3 366.503 145.1/125.0 25 366.0/231.2 5 24.259 4-[(反式,反式)-4'-(3-丁烯-1-基)[1,1'-联环己基]-4-基]-1,2-二氟苯) 4-[(trans,trans)-4'-(3-Buten-1-yl)[1,1'-bicyclohexyl]-4-yl]-1,2-difluoro-benzene BBDB 155266 -68-5C22H30F2 332.47 332.2/179.1 20 179.1/164.0 15 22.294 2',3,4,5-四氟-4'-(反式-4-丙基环己基)联苯 2',3,4,5-Tetrafluoro-4'-(trans-4-propylcyclohexyl)biphenyl TePrB 173837 -35-9C21H22F4 350.393 239/219 25 350.1/251.9 15 19.610 反,反-4-(2,3-二氟-4-甲基苯基)-4'-乙基联环己烷 [Trans(trans)]-1-(4'-ethyl[1,1'-bicyclohexyl]-4-yl)-2,3-difluoro-4-methylbenzene EBDMB 174350 -08-4C21H30F2 320.46 154.1/153.1 15 320.2/154.1 20 20.299 1-丁氧基-2,3-二氟-4-(反式-4-丙基环己基)苯 1-Butoxy-2,3-difluoro-4-(trans-4-propylcyclohexyl)benzene BDPrB 208709 -55-1C19H28F2O 310.422 310.1/254.1 5 254.1/156.0 5 16.388 2'-氟-4-戊基-4''-丙基-1,1':4',1''-三联苯(2'-氟-4-苯基-4'-丙基1,1':4',1''-三联苯) 2'-Fluoro-4-Pentyl-4''-Propyl-1,1':4',1''-Terphenyl PFPT 95759 -51-6C26H29F 360.507 303.1/274.0 25 360.1/303.1 15 30.251 4-[二氟(3,4,5-三氟苯氧基)甲基]-3,5-二氟-4'-丙基-联苯 4-[Difluoro(3,4,5-trifluorophenoxy)methyl]-3,5-difluoro-4'-propyl-biphenyl DTMDPB(tFPO-CF2-Df3b) f 303186 -20-1C22H15F7O 428.343 281.1/252.1 25 252.0/183.0 25 20.717 1-[4-(4-丁基环己基)环己基]-4-乙氧基-2,3-二氟苯 1-[4-(4-butylcyclohexyl)cyclohexyl]-4-ethoxy-2,3-difluoro-benzene BCEDB(2OdFP4bcH) f 473257 -15-7C24H36F2O 378.539 184.1/156.0 5 378.0/184.1 5 28.254 4-[二氟(3,4,5-三氟苯氧基)甲基]-4'-乙基-3,5-二氟联苯 4-[Difluoro(3,4,5-trifluorophenoxy)methyl]-3,5- difluoro-4'-ethyl-biphenyl DTMDEB 303186 -19-8C21H13F7O 414.316 267.0/252.0 25 252.0/183.0 25 18.830 2,3-二氟-4-[(反式-4-丙基环己基)甲氧基]苯甲醚 2,3-Difluoro-1-methoxy-4-[(trans-4-propylcyclohexyl)methoxy]benzene DMPMB 1373116 -00-7C17H24F2O2 298.368 160.0/145.0 10 298.1/160.0 5 15.372 3,4,5-三氟-4'-(反式-4-戊基环己基)联苯 3,4,5-Trifluoro-4'-(trans-4-pentylcyclohexyl)biphenyl TrPeB 137019 -95-5C23H27F3 360.456 247.1/232.1 20 234.1/219.1 25 25.078 1,2-二氟-4-[反-4-[2-(反-4-丙基环己基)乙基]环己基]苯 1,2-Difluoro-4-[trans-4-[2-(trans-4-propylcyclohexyl)ethyl]cyclohexyl]-benzene DPrECB 117943 -37-0C23H34F2 348.513 140.1/114.1 25 348.1/140.1 10 24.235 内标化合物(Internal standards, ISs) 联苯-d10 D10-Biphenyl BPh-d10 1486 -01-7C12D10 164.27 164.1/162.2 20 162.1/160.2 20 6.492 2,2',3,3',4-五氯联苯 2,2’,3,3’,4-Pentachlorobiphenyl PCB82 52663 -62-4C12H5Cl5 326.4331 326.0/256.0 25 328.0/256.0 25 17.359 2,2',3,4,5,5'-六氯联苯 2,2’,3,4,5,5’-Hexachlorobiphenyl PCB141 52712 -04-6C12H4Cl6 360.88 362.0/292.0 25 360.0/292.0 25 19.401 2,2',3,3',4,5,5',6-八氯联苯 2,2’,3,3’,4,5,5’,6-Octachlorobiphenyl PCB198 68194 -17-2C12H2Cl8 429.77 428.0/358.0 30 430.0/358.0 30 24.490 回收率指示物(Recovery standards, RSs) 2,3,6-三氯联苯 2,3,6-Trichlorobiphenyl PCB24 55702 -45-9C12H7Cl3 257.54298 256.0/186.0 20 258.0/186.0 20 11.402 注:MWa: molecular weight; MQb: MS quantitation; CEc: Collision energy (eV); MCd: MS confirmation; RTe: Retention time (min); f括号内为化合物别称. 表 2 各LCMs的空白均值、定量限、检出限、加标回收率和相对标准偏差
Table 2. Blank mean, limits of quantification, limits of detection, recovery and relative standard deviation of individual LCMs
空白均值/(ng·mL−1)
Blank mean定量限/(ng·g−1)
Limits of quantification检出限/(ng·g−1)
Limits of detection回收率/%
Recovery相对标准偏差/%
Relative standard deviationPVB ND 0.116 0.0388 69.8 5.64 MOPB ND 0.0429 0.0143 102 5.39 BVBC ND 0.313 0.104 101 7.52 PPB ND 0.00510 0.00170 98.7 5.55 MPB ND 0.000267 0.0000890 113 3.41 EBMB ND 0.382 0.127 124 3.56 MPCB ND 0.0418 0.0139 140 2.61 MPhBB ND 0.364 0.121 137 2.57 EPB ND 0.000468 0.000156 129 0.473 EtCBN ND 0.00276 0.000921 87.0 3.79 3CHB ND 0.219 0.0731 102 5.19 3eCHB ND 0.148 0.0493 88.2 5.73 4CHB ND 0.098 0.0327 91.9 3.77 2OCB 0.0321 1.08 0.359 93.7 5.25 4CB ND 0.00106 0.000352 94.4 4.91 3OCB ND 0.00524 0.00175 82.6 3.33 8OCB ND 0.0259 0.00864 65.5 5.09 EDPrB ND 0.000150 5.02E-05 87.0 3.79 DMPMB 0.0325 1.089 0.363 99.4 3.46 BDPrB 0.0661 2.80 0.934 102 1.49 EDPeB ND 0.0541 0.0180 116 1.73 ECTB ND 0.0714 0.0238 111 1.57 DFPVBC ND 1.124 0.375 117 1.21 DECB ND 0.207 0.0692 142 2.00 DTMDEB ND 0.00160 0.000532 120 1.70 DFECB ND 0.000137 4.55E-05 132 1.63 PCTB 0.211 4.339 1.45 103 1.88 TPrCB ND 0.0289 0.00964 115 2.62 TePrB ND 0.00213 0.000711 111 2.13 FPCB ND 0.157 0.0524 102 3.21 DPrCB ND 2.88 0.961 111 3.83 EBDMB ND 0.536 0.179 115 2.04 TrPrB ND 1.654 0.551 109 2.75 DTMDPB ND 0.000674 0.000225 94.3 2.60 DPrB ND 0.00288 0.000960 123 2.24 FPB ND 0.0432 0.0144 105 3.73 TePT ND 0.00194 0.000646 105 2.11 BBDB ND 0.00818 0.00273 98.9 2.60 DBCB ND 0.00511 0.00170 133 5.13 TPrECB ND 0.0915 0.0305 105 1.67 DPrECB ND 0.00716 0.00239 137 2.55 TPeCB 0.109 3.66 1.22 80.1 9.53 DFEPBC ND 0.480 0.160 128 2.14 DPeCB ND 0.0724 0.0241 102 1.98 TrPeB ND 0.226 0.0752 142 0.927 DPeB ND 0.00920 0.00307 130 0.900 EDPBB ND 0.0206 0.00686 143 2.05 EFPT 0.0153 0.316 0.105 140 1.60 EDPB 0.0512 1.10 0.367 132 1.09 BCEDB ND 0.0326 0.0109 127 0.661 EBCTFB ND 0.0106 0.00353 112 1.00 PFPT ND 0.00929 0.00310 121 1.52 TPrBB ND 0.0108 0.00360 133 1.24 DPrBB 0.0266 0.891 0.297 137 0.512 TPeBB ND 0.00803 0.00268 135 0.882 DPeBB ND 0.00451 0.00150 117 0.492 FPePrB ND 0.434 0.145 136 4.59 注:ND,Not Detected,未检出(<LOQ). 表 3 灰尘样品中LCMs含量(n = 31)
Table 3. Concentrations of LCMs in dust samples (n = 31)
室内灰尘(n = 24)
Indoor dust庭院灰尘(n = 7)
Yard dust化合物Compounds 检出率/%
Detection frequency中值/(ng·g−1)
Median范围/(ng·g−1)
Range检出率/%
Detection frequency中值/(ng·g−1)
Median范围/(ng·g−1)
RangePVB 91.7 133 ND—322 100 234 146—301 MOPB 95.8 77.9 ND—390 100 173 102—213 BVBC 58.3 52.8 ND—168 42.9 ND ND—92.0 PPB 95.8 62.0 ND—119 100 83.5 ND—123 MPB 87.5 0.549 ND—1.17 85.7 1.20 ND—2.62 EBMB 62.5 4.71 ND—29.8 100 17.1 11.8—344 MPCB 8.33 ND ND—6.26 71.4 5.62 ND—47.5 MPhBB 33.3 ND ND—21.2 85.7 18.7 ND—259 EPB 54.2 0.243 ND—1.95 42.9 ND ND—105 Σ9BAs — 331 ND— 1060 — 533 315— 1490 EtCBN 16.7 ND ND—24.0 28.6 ND ND—19.3 3CHB 54.2 3.10 ND—15.1 85.7 8.79 ND—13.1 3eCHB 8.33 ND ND—10.3 28.6 ND ND—18.7 4CHB 8.33 ND ND—5.88 28.6 ND ND—8.20 4CB 58.3 2.05 ND—4.44 28.6 ND ND—4.81 3OCB 33.3 ND ND—2.10 42.9 ND ND—18.2 8OCB 29.2 ND ND—3.25 28.6 ND ND—11.6 Σ7CBAs — 5.15 ND—65.1 — 8.79 ND—94.0 EDPrB 41.7 ND ND—4.84 71.4 1.25 ND—56.1 DMPMB 25.0 ND ND—9.96 28.6 ND ND—61.9 EDPeB 87.5 4.73 ND—7.86 71.4 2.31 ND—17.5 ECTB 20.8 ND ND—6.22 28.6 ND ND—22.6 DFPVBC 37.5 ND ND—126 71.4 137 ND—461 DECB 58.3 3.03 ND—18.2 42.9 ND ND—14.2 DTMDEB 20.8 ND ND—0.46 0 — — DFECB 12.5 ND ND-12.7 0 — — PCTB 8.33 ND ND—8.47 14.3 ND ND—9.41 TPrCB 25.0 ND ND—6.90 14.3 ND ND—11.3 TePrB 29.2 ND ND—1.84 85.7 0.706 ND—9.51 FPCB 20.8 ND ND—11.0 57.1 7.21 ND—13.2 DPrCB 25.0 ND ND—4.62 28.6 ND ND—27.5 EBDMB 79.2 74.3 ND—148. 100 98.4 72.1—390 TrPrB 25.0 ND ND—4.55 42.9 ND ND—20.5 DTMDPB 62.5 0.184 ND—4.04 85.7 0.695 ND—48.7 DPrB 33.3 ND ND—2.91 42.9 ND ND—5.66 FPB 25.0 ND ND—1.94 0 — — TePT 33.3 ND ND—0.43 85.7 0.78 ND—15.9 BBDB 29.2 ND ND—24.8 42.9 ND ND—31.9 DBCB 20.8 ND ND—18.6 28.6 ND ND—22.4 TPrECB 0 — — 28.6 ND ND—15.4 DPrECB 25.0 ND ND—4.89 42.9 ND ND—3.24 TPeCB 8.33 ND ND—9.05 28.6 ND ND—5.80 DPeCB 58.3 3.77 ND—8.18 85.7 5.28 ND—46.9 DPeB 0 — — 28.6 ND ND—58.3 EDPBB 79.2 2.62 ND—146 85.7 3.37 ND—75.9 EFPT 20.8 ND ND—0.697 57.1 0.449 ND—5.92 EDPB 33.3 ND ND—5.52 57.1 1.14 ND—215 BCEDB 20.8 ND ND—5.57 71.4 2.69 ND—25.0 EBCTFB 50.0 1.28 ND—8.55 42.9 ND ND—13.7 PFPT 87.5 0.400 ND—1.23 85.7 0.409 ND—0.653 TPrBB 70.8 0.481 ND—2.87 85.7 0.785 ND—11.2 DPrBB 12.5 ND ND—1.55 42.9 ND ND—2.20 TPeBB 8.33 ND ND—6.12 14.3 ND ND—9.45 Σ35FBAs — 90.8 ND—624 — 262 72.1— 1730 Σ51LCMs — 427 ND— 1750 — 804 388— 3310 注:DF, Detection Frequency,检出频率;—,无数据. 表 4 成人和儿童在室内和庭院中经摄入、吸入和皮肤接触途径的LCMs暴露量(ng·kg−1·d−1)
Table 4. Exposure dose of LCMs via ingestion, inhalation, and dermal contact in indoor and yard for adults and children
室内
Indoor庭院
Yard成人
Adults儿童
Children成人
Adults儿童
ChildrenEDI der 2.76 35.5 1.26 5.59 EDI ing 0.00159 0.00527 0.000727 0.000830 EDI inh 5.46 29.5 2.49 4.65 EDI 8.22 65.1 3.75 10.2 表 5 成人、儿童在室内和庭院中的暴露危险熵
Table 5. HQ for adults and children in indoors and yards
化合物
CompoundsTDI/ (μg·kg·d−1) 室内
Indoor庭院
Yard成人 Adults 儿童 Children 成人Adults 儿童Children EDPBB 28.0 0.000172 0.00136 0.000360 0.000330 EDPrB 2250 1.28×10−7 1.01×10−6 3.71×10−7 2.21×10−6 BCEDB 200 1.24×10−6 9.81×10−6 3.41×10−6 1.78×10−5 FPCB 41.2 1.61×10−5 0.000127 3.57×10−5 6.92×10−5 EDPeB 79.2 2.18×10−5 0.000173 4.50×10−5 2.58×10−5 TePrB 15.8 6.65×10−6 5.27×10−5 1.66×10−5 6.24×10−5 DTMDPB 21.0 1.08×10−5 8.52×10−5 3.35×10−5 0.000229 PCTB 60.0 4.24×10−6 3.36×10−5 9.10×10−6 1.19×10−5 BBDB 23.9 6.18×10−5 0.000490 0.000135 0.000225 EFPT 10000 3.91×10−9 3.09×10−8 1.11×10−8 6.31×10−8 -
[1] GEELHAAR T, GRIESAR K, RECKMANN B. 125 Years of liquid crystals—a scientific revolution in the home[J]. Angewandte Chemie International Edition, 2013, 52(34): 8798-8809. doi: 10.1002/anie.201301457 [2] LIANG X X, XIE R M, ZHU C Y, et al. Comprehensive identification of liquid crystal monomers-biphenyls, cyanobiphenyls, fluorinated biphenyls, and their analogues-in waste LCD panels and the first estimate of their global release into the environment[J]. Environmental Science & Technology, 2021, 55(18): 12424-12436. [3] LIU Z F, XU Z Y, HUANG H H, et al. A study of waste liquid crystal display generation in mainland China [J]. Waste Management & Research: the Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 2016, 34(1): 58-66. [4] LI J H, SU G Y, LETCHER R J, et al. Liquid crystal monomers (LCMs): A new generation of persistent bioaccumulative and toxic (PBT) compounds?[J]. Environmental Science & Technology, 2018, 52(9): 5005-5006. [5] SU H J, SHI S B, ZHU M, et al. Persistent, bioaccumulative, and toxic properties of liquid crystal monomers and their detection in indoor residential dust[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(52): 26450-26458. [6] LI C, HUANG Y, ZHANG X, et al. Atmospheric fate and risk investigation of typical liquid crystal monomers[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(9): 3600-3607. [7] CHENG Z P, SHI Q Y, WANG Y, et al. Electronic-waste-driven pollution of liquid crystal monomers: Environmental occurrence and human exposure in recycling industrial parks[J]. Environmental Science & Technology, 2022, 56(4): 2248-2257. [8] SHEN M J, FENG Z Q, LIANG X X, et al. Release and gas-particle partitioning behavior of liquid crystal monomers during the dismantling of waste liquid crystal display panels in E-waste recycling facilities[J]. Environmental Science & Technology, 2022, 56(5): 3106-3116. [9] SU H J, SHI S B, ZHU M, et al. Liquid crystal monomers (LCMs) in sediments: Method validation and detection in sediment samples from three typical areas[J]. Environmental Science & Technology, 2021, 55(4): 2336-2345. [10] JIN Q Q, TAO D Y, LU Y C, et al. New insight on occurrence of liquid crystal monomers: A class of emerging e-waste pollutants in municipal landfill leachate[J]. Journal of Hazardous Materials, 2022, 423: 127146. doi: 10.1016/j.jhazmat.2021.127146 [11] LI R R, REN K F, SU H J, et al. Target and suspect analysis of liquid crystal monomers in soil from different urban functional zones[J]. Science of the Total Environment, 2023, 854: 158408. doi: 10.1016/j.scitotenv.2022.158408 [12] MERCIER F, GLORENNEC P, THOMAS O, et al. Organic contamination of settled house dust, a review for exposure assessment purposes[J]. Environmental Science & Technology, 2011, 45(16): 6716-6727. [13] BESIS A, SAMARA C. Polybrominated diphenyl ethers (PBDEs) in the indoor and outdoor environments - A review on occurrence and human exposure[J]. Environmental Pollution, 2012, 169: 217-229. doi: 10.1016/j.envpol.2012.04.009 [14] ZHANG Q Y, LI X J, WANG Y, et al. Occurrence of novel organophosphate esters derived from organophosphite antioxidants in an e-waste dismantling area: Associations between hand wipes and dust[J]. Environment International, 2021, 157: 106860. doi: 10.1016/j.envint.2021.106860 [15] 侯燕, 唐斌, 蔡凤珊, 等. 广州市居民家庭室内灰尘中传统和新型阻燃剂与塑化剂的污染特征及健康风险评估[J]. 环境科学学报, 2022, 42(7): 106-122. HOU Y, TANG B, CAI F S, et al. Legacy and novel flame retardants and plasticizers in indoor dust from residents' homes in Guangzhou: Pollution status and human exposure assessment[J]. Acta Scientiae Circumstantiae, 2022, 42(7): 106-122 (in Chinese).
[16] 熊仕茂, 朱晓辉, 蔡凤珊, 等. 灰尘中有机磷系阻燃剂及其降解产物检测方法的建立[J]. 环境化学, 2019, 38(11): 2457-2466. doi: 10.7524/j.issn.0254-6108.2018120901 XIONG S M, ZHU X H, CAI F S, et al. Establishment of detection method for organic phosphorus flame retardants and their degradation products in dust[J]. Environmental Chemistry, 2019, 38(11): 2457-2466 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018120901
[17] TANG B, CHRISTIA C, MALARVANNAN G, et al. Legacy and emerging organophosphorus flame retardants and plasticizers in indoor microenvironments from Guangzhou, South China[J]. Environment International, 2020, 143: 105972. doi: 10.1016/j.envint.2020.105972 [18] ZHANG S H, YANG M, LI Y H, et al. Occurrence, distribution, and human exposure of emerging liquid crystal monomers (LCMs) in indoor and outdoor dust: A nationwide study[J]. Environment International, 2022, 164: 107295. doi: 10.1016/j.envint.2022.107295 [19] USEPA. Exposure factors handbook 2011 edition (final report) [R]. EPA/600/R-09/052F. Washington, DC: Environmental Protection Agency, Office of Research Development, 2011. [20] YANG R H, WANG X Y, NIU Y M, et al. Fluorinated liquid-crystal monomers in paired breast milk and indoor dust: A pilot prospective study[J]. Environment International, 2023, 176: 107993. doi: 10.1016/j.envint.2023.107993 [21] TAO F, ABDALLAH M A E, HARRAD S. Emerging and legacy flame retardants in UK indoor air and dust: Evidence for replacement of PBDEs by emerging flame retardants?[J]. Environmental Science & Technology, 2016, 50(23): 13052-13061. [22] ZHAO L M, ZHANG Y Y, DENG Y R, et al. Traditional and emerging organophosphate esters (OPEs) in indoor dust of Nanjing, Eastern China: Occurrence, human exposure, and risk assessment[J]. Science of the Total Environment, 2020, 712: 136494. doi: 10.1016/j.scitotenv.2020.136494 [23] BUTTE W, HEINZOW B. Pollutants in house dust as indicators of indoor contamination[J]. Reviews of Environmental Contamination and Toxicology, 2002, 175: 1-46. [24] SHINOHARA N, UCHINO K. Diethylhexyl phthalate (DEHP) emission to indoor air and transfer to house dust from a PVC sheet[J]. Science of the Total Environment, 2020, 711: 134573. doi: 10.1016/j.scitotenv.2019.134573 [25] WESCHLER C J, CARSLAW N. Indoor chemistry[J]. Environmental Science & Technology, 2018, 52(5): 2419-2428. [26] SU H Q, LU Y L, WANG P, et al. Perfluoroalkyl acids (PFAAs) in indoor and outdoor dusts around a mega fluorochemical industrial park in China: Implications for human exposure[J]. Environment International, 2016, 94: 667-673. doi: 10.1016/j.envint.2016.07.002 [27] 朱智成, 陈社军, 丁南, 等. 珠三角电子垃圾和城市地区家庭灰尘中多氯联苯的来源及暴露风险[J]. 环境科学, 2014, 35(8): 3066-3072. ZHU Z C, CHEN S J, DING N, et al. Polychlorinated biphenyls in house dust at an E-waste site and urban site in the Pearl River Delta, southern China: Sources and human exposure and health risks[J]. Environmental Science, 2014, 35(8): 3066-3072 (in Chinese).
[28] LI Y H, ZHANG T, CHENG Z P, et al. Direct evidence on occurrence of emerging liquid crystal monomers in human serum from E-waste dismantling workers: Implication for intake assessment[J]. Environment International, 2022, 169: 107535. doi: 10.1016/j.envint.2022.107535 [29] KHAN M U, LI J, ZHANG G, et al. New insight into the levels, distribution and health risk diagnosis of indoor and outdoor dust-bound FRs in colder, rural and industrial zones of Pakistan[J]. Environmental Pollution, 2016, 216: 662-674. doi: 10.1016/j.envpol.2016.06.030 [30] HE C, WANG X Y, THAI P, et al. Organophosphate and brominated flame retardants in Australian indoor environments: Levels, sources, and preliminary assessment of human exposure[J]. Environmental Pollution, 2018, 235: 670-679. doi: 10.1016/j.envpol.2017.12.017 -