-
规律间隔成簇短回文重复序列及其相关蛋白(clustered regularly interspaced short palindromic repeats/CRISPR associated proteins,CRISPR/Cas)系统是古细菌和大多数细菌在生物进化过程中抵御病毒入侵而形成的一种适应性免疫防御系统. 1987年Nakata等[1]首次报道了它的特殊结构,crRNA(CRISPR RNA)包含间隔序列与重复序列[2],间隔序列来源于噬菌体和共轭质粒等外源基因,用于识别目标核酸,重复序列则用于结合Cas蛋白并指引其发挥作用. 随后科学家们在超过40%的细菌和90%的古生菌中发现了类似结构的序列[3],命名为CRISPR/Cas[4]. 对Cas蛋白的研究发现Cas12a和Cas13a不仅可以特异性顺式切割目标双链DNA(dsDNA)、单链DNA/RNA(ssDNA/RNA),还具有非特异性切割溶液中的游离核酸的“反式切割”[5 − 7]. 由于CRISPR/Cas系统具有特异性识别目标核酸、非特异性切割游离核酸及可编程性等优点,无需专业设备即可提供价格低廉、快速、准确的即时检测,被用来开发快速、高效、低成本和高灵敏度的分子传感器,例如SHERLOCK[8]和DETECTR[9]等,在新型冠状病毒检测中发挥了重要作用[10 − 12].
近年来,除重金属离子外,抗生素、内分泌干扰物、持久性难降解有机物等新型污染物越来越受人们关注,已成为环境分析的重要靶物. 传统上,这些非核酸靶标的检测依靠高效液相色谱(HPLC)[13]、气相色谱/质谱(GC/MS)[14]或酶联免疫吸附测定(ELISA)[15]等方法. 然而,这些方法通常耗时长、成本高,或需要昂贵的仪器和专业操作人员,不利于现场即时检测或快速筛查. 鉴于CRISPR/Cas系统的成熟可靠和可扩展性,研究人员尝试将其应用于环境/食品安全领域的非核酸靶标检测中,开发出了一系列高灵敏度、高特异性的便携式检测设备. 然而,相对于核酸检测应用,CRISPR/Cas系统在非核酸靶标的检测研究相对滞后. 这主要因为Cas的活化依赖于核酸底物,而构筑高灵敏度、高特异性和通用性的元件将非核酸靶标信息转换为核酸信息仍然面临挑战. 为此,本文综述了基于CRISPR/Cas系统的生物传感器在环境监测领域中非核酸靶标检测的应用进展,包括了重金属离子、阴离子、新污染物、农药、真菌毒素以及有害细菌等目标物,重点讨论了将非核酸靶标的信息转换为核酸信息的策略,并对不同的信号输出方式和检测能力进行分析比较(信息汇总于表1),最后对该领域研究存在的问题和可能的发展方向进行探讨.
基于CRISPR/Cas系统的生物传感器在环境分析中的应用进展
Advances in CRISPR/Cas-based biosensors for environmental analysis applications
-
摘要: CRISPR/Cas可改造为靶核酸刺激-响应的传感系统,可视为集“分子识别与信号输出”一体的生物传感器,目前在核酸即时诊断中已得到广泛应用. 鉴于该系统具有成熟、可靠和可扩展的优点,研究人员尝试将其用于环境分析领域的非核酸分析物检测,已开发了一系列具有应用前景的便携式设备. 然而,如何将非核酸靶标信息转换为核酸信息仍存在挑战,这限制了CRISPR/Cas系统在环境分析中的应用推广. 为此,本文综述了CRISPR/Cas系统在重金属离子和阴离子、新污染物、农药与真菌毒素以及有害细菌等非核酸靶标检测中的应用进展,重点介绍了构筑非核酸靶标信息转换元件的策略,以期为推进该系统在环境分析中的应用提供支持.
-
关键词:
- CRISPR/Cas /
- 新污染物 /
- 核酸适体 /
- RNA-cleaving DNAzyme /
- 生物传感器.
Abstract: The CRISPR/Cas can be engineered as a stimuli-responsive sensing system for the target nucleic acids, which enables it to serve as a “two-in-one” biosensor with both molecular recognition element and signal output element. Up to date, this type of biosensing systems have been widely employed in the Point of Care Testing (POCT) for nucleic acids. Taking advantage of being mature, reliable and scalable, the CRISPR/Cas system has been developed as portable devices for the identification of non-nucleic acid analytes in the field of environmental analytical chemistry. However, challenges remain to be resolved in converting the information from non-nucleic acid targets to nucleic acids, and thus limiting its utilization in environmental analysis. Here, we review the applications of the CRISPR/Cas system in the detection of non-nucleic acid targets, including heavy metal ions and anions, emerging contaminants, pesticides, mycotoxins, and harmful bacteria. Moreover, we focus on the strategies of constructing non-nucleic acid target transducers in order to promote the utilization of this system in environmental analysis.-
Key words:
- CRISPR/Cas /
- emerging contaminants /
- aptamer /
- RNA-cleaving DNAzyme /
- biosensor.
-
图 1 基于CRISPR/Cas系统的离子传感器:(a)RCD-AuNP球形核酸与CRISPR/Cas整合的Pb2+传感器[17];(b)适配体-CRISPR/Cas系统检测Cd2+[21];(c)核糖开关-CRISPR/Cas系统检测F−[22]
Figure 1. CRISPR/Cas-based biosensor for the detection of heavy metal ions and anion (F−): (a) RCD-AuNP spherical nucleic acids and CRISPR/Cas system for the sensing of Pb2+ [17]; (b) An aptamer-CRISPR/Cas system as a Cd2+ sensor [21]; (c) A riboswitch-CRISPR/Cas system for the detection of F− [22]
图 2 基于CRISPR/Cas系统的内分泌干扰物、抗生素和持久性有机污染物的生物传感器:(a)适配体-CRISPR/Cas系统检测E2[25];(b)整合ELISA与CRISPR/Ca系统检测E2[26];(c)基于适配体-HCR-CRISPR/Cas的卡那霉素传感器[28];(d)基于适配体-SDA-CRISPR/Cas的妥布霉素传感器[30];(e)检测BaP、AFB1和CAP的“iPOCT”系统[34]
Figure 2. CRISPR/Cas-based biosensors for the detection of endocrine disrupting chemicals, antibiotics, and persistent organic pollutants: (a) Aptamer-CRISPR/Cas system for the sensing of E2[25]; (b) Combination of ELISA and CRISPR/Cas system for the detection of E2[26]; (c) Aptamers, HCR, and CRISPR/Cas-based biosensors for kanamycin[28]; (d) Aptamer-SDA-CRISPR/Cas system for Tobramycin detection[30]; (e) An “iPOCT” system for the detection of BaP, AFB1, and CAP[34]
图 3 基于CRISPR/Cas系统检测农药和真菌毒素的生物传感器:(a)检测农药的三酶级联系统 [36];(b)适配体-CRISPR/Cas系统检测AFB1[39];(c)适配体-CRISPR/Cas系统检测胶霉毒素[40]
Figure 3. CRISPR/Cas -based biosensors for the detection of pesticides and mycotoxins: (a) A three-enzymes-cascade system for the detection of pesticides[36]; (b), and (c) Aptamer-CRISPR/Cas-based biosensor for AFB1 (b) [39]; and gliotoxin (c) [40]
图 4 基于CRISPR/Cas检测细菌的生物传感器. (a)适配体-CRISPR/Cas系统检测鼠伤寒沙门菌[42];(b)基于RNA-cleaving DNAzyme切割ccrRNA激活CRISPR/Cas系统的策略检测大肠杆菌和肺炎克雷伯菌[43]
Figure 4. CRISPR/Cas-based biosensors for the detection of bacteria: (a) Aptamer-CRISPR/Cas-based biosensor for Salmonella typhimurium[42]; (b) A CRISPR/Cas-based biosensor that is activated by a ccrRNA-cleaving DNAzyme for the detection of Escherichia coli and Klebsiella pneumoniae[43]
表 1 基于CRISPR/Cas系统的传感器在环境分析中的应用
Table 1. Application of CRISPR/Cas-based biosensors in the environmental analysis field
靶标
Targets信息转
换元件
Information converting element效应蛋白
The type of Cas检出限
Limit of detection检测时间
Detection
time信号输出
Signal output样品
Samples检测设备
Testing equipment文献
Ref.重金属离子 Pb2+ DNAzyme(GR-5) Cas12a 0.053 nmol·L−1 15 min 荧光法 — — [16] Pb2+ DNAzyme(8-17E) Cas12a 86 fmol·L−1 — 荧光法 血清、空气颗粒、土壤 智能手机 [17] Pb2+ DNAzyme(GR-5) Cas12a 0.54 nmol·L−1 — 比色法 食用油、白酒 肉眼观察 [18] Pb2+ DNAzyme(GR-5) Cas12a 0.02 pmol·L−1 — 电化学 酒、花生、大米、食用油 电化学分析仪 [19] Pb2+ DNAzyme(GR-5) Cas12a 0.48 nmol·L−1 — 荧光法 矿泉水 便携式3D打印设备 [20] Cd2+ 适配体 Cas12a 60 pmol·L−1 120 min 荧光法 湖水、大米 — [21] Zn2+ 变构转录因子(SmtB) Cas13a 1 μmol·L−1 20 min 荧光法 市政水样 便携式3D打印设备 [22] 阴离子 F− 核糖开关(crcB) Cas13a 1 μmol·L−1 20 min 荧光法 — 便携式3D打印设备 [22] F− 核糖开关 Cas13a 1.7 μmol·L−1 30 min 荧光法 瓶装水、自来水、湖水 荧光计 [23] 内分泌
干扰物双酚A、
雌二醇适配体 Cas12a 0.06、
0.08 nmol·L−120 min 荧光法 尿液、污水 — [24] 雌二醇 适配体 Cas12a 0.015 ng·mL−1 — 比色法 牛奶、蛋类、猪肉 肉眼观察 [25] 内分泌
干扰物雌二醇 适配体 Cas12a 180 fmol·L−1 — 比色法 牛奶、自来水、血清、尿液 LFA [26] 抗生素 卡那霉素 适配体 Cas12a 4.06 pmol·L−1 30 min 同位素法 野生鱼血清、肌肉、肝脏 电感耦合等离子体-质谱法 [27] 卡那霉素 适配体 Cas12a 1 pmol·L−1 — 酶催化蔗糖转化为葡萄糖 河水、牛奶 血糖仪 [28] 卡那霉素 适配体 Cas12a 14.8 nmol·L−1 26min 比色法 牛奶 侧向层析测定 [29] 妥布霉素 适配体 Cas12a 1.542 pmol·L−1 — 荧光法 湖水、牛奶 紫外灯 [30] 四环素 变构转录因子(TetR) Cas12a 2 μmol·L−1 — 荧光法 环境水样 手持可视化荧光仪 [31] 氨苄青霉素 适配体 Cas12a 0.01 nmol·L−1 30 min 荧光法 鲜奶、生蛋清、生蜂蜜 荧光仪 [32] 氨苄青霉素 适配体 Cas14a 2.06 nmol·L−1 45 min 同位素法 江河水样 ICP-MS [33] 持久性有机污染物 苯并[a]芘 抗体 Cas12a 4.971 fg·mL−1 — 荧光法 湖水、大豆油 智能手机 [34] 对羟基
苯甲酸变构转录因子 Cas12a 1.8 nmol·L−1 — 荧光法 — 荧光仪 [35] 农药 对氧磷、
敌敌畏、
内吸磷DNAzyme
(8-17E变体)Cas12a 270、406、
218 pg·mL−1— 荧光法 柑橘类水果、卷心菜 — [36] 啶虫脒 适配体 Cas12a 2.7 pmol·L−1 — 电化学发光 生菜 肉眼观察 [37] 真菌毒素 脱氧雪腐镰刀菌烯醇 抗体 Cas12a 0.061 ng·mL−1 30 min 粒子计数 玉米、水 粒子计数器 [38] 黄曲霉毒素 抗体 Cas12a 0.00257 fg·mL−1 — 荧光法 花生、面粉 智能手机 [34] 黄曲霉毒素 适配体 Cas12a 0.8 ng·mL−1 20 min 比色法 红酒、啤酒、牛奶 荧光板读取仪 [39] 胶霉毒素 适配体 Cas12a 2.4 fmol·L−1 55 min 电化学 苹果、胡萝卜、红薯、马铃薯、玉米 手持式电化学分析仪 [40] 赭曲霉毒素 适配体 Cas12a 0.83 ng/mL 60 min 荧光法 玉米粉 荧光仪 [41] 细菌 沙门氏菌 适配体 Cas12a 20 CFU·mL−1 — 电化学 牛奶 电化学工作站 [42] 大肠杆菌 DNAzyme
(EC1)Cas12a 102 CFU·mL−1 107 min 荧光法 尿液 荧光仪 [43] 肺炎球菌 DNAzyme
(KP6)Cas12a 102 CFU·mL−1 — 荧光法 — 荧光仪 [43] “—”,文献缺乏相应信息. “—”, Lack of information. -
[1] ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology, 1987, 169(12): 5429-5433. doi: 10.1128/jb.169.12.5429-5433.1987 [2] MOJICA F J, DIEZ-VILLASENOR C, GARCIA-MARTINEZ J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. Journal Of Molecular Evolution, 2005, 60(2): 174-182. doi: 10.1007/s00239-004-0046-3 [3] MOJICA F J, DIEZ-VILLASENOR C, SORIA E, et al. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria[J]. Molecular Microbiology, 2000, 36(1): 244-246. doi: 10.1046/j.1365-2958.2000.01838.x [4] JANSEN R, EMBDEN J D, GAASTRA W, et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology, 2002, 43(6): 1565-1575. doi: 10.1046/j.1365-2958.2002.02839.x [5] QIN J J, WANG W, GAO L Q, et al. Emerging biosensing and transducing techniques for potential applications in point-of-care diagnostics[J]. Chemical Science, 2022, 13(10): 2857-2876. doi: 10.1039/D1SC06269G [6] KIM S, JI S, KOH H R. CRISPR as a Diagnostic Tool[J]. Biomolecules, 2021, 11(8): 1162. doi: 10.3390/biom11081162 [7] YUE H H, HUANG M Q, TIAN T, et al. Advances in clustered, regularly interspaced short palindromic repeats (CRISPR)-based diagnostic assays assisted by micro/nanotechnologies[J]. ACS Nano, 2021, 15(5): 7848-7859. doi: 10.1021/acsnano.1c02372 [8] GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336): 438-442. doi: 10.1126/science.aam9321 [9] CHEN J S, MA E, HARRINGTON L B, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436-439. doi: 10.1126/science.aar6245 [10] BROUGHTON J P, DENG X D, YU G X, et al. CRISPR–Cas12-based detection of SARS-CoV-2[J]. Nature Biotechnology, 2020, 38(7): 870-874. doi: 10.1038/s41587-020-0513-4 [11] SELVAM K, NAJIB M A, KHALID M F, et al. RT-LAMP CRISPR-Cas12/13-Based SARS-CoV-2 Detection Methods[J]. Diagnostics, 2021, 11(9): 1646. doi: 10.3390/diagnostics11091646 [12] LIANG Y H, LIN H Q, ZOU L R, et al. CRISPR-Cas12a-Based Detection for the Major SARS-CoV-2 Variants of Concern[J]. Microbiology Spectrum, 2021, 9(3): e0101721. doi: 10.1128/Spectrum.01017-21 [13] RANJBARIAN F, SHARMA S, FALAPPA G, et al. Isocratic HPLC analysis for the simultaneous determination of dNTPs, rNTPs and ADP in biological samples[J]. Nucleic Acids Research, 2022, 50(3): e18. doi: 10.1093/nar/gkab1117 [14] ZHANG S M, WANG H B, ZHU M J. A sensitive GC/MS detection method for analyzing microbial metabolites short chain fatty acids in fecal and serum samples[J]. Talanta, 2019, 196: 249-254. doi: 10.1016/j.talanta.2018.12.049 [15] ALBERTI D, VAN'T ERVE M, STEFANIA R, et al. A quantitative relaxometric version of the ELISA test for the measurement of cell surface biomarkers[J]. Angewandte Chemie International Edition, 2014, 53(13): 3488-3491. doi: 10.1002/anie.201310959 [16] LI J J, YANG S S, ZUO C, et al. Applying CRISPR-Cas12a as a Signal Amplifier to Construct Biosensors for Non-DNA Targets in Ultralow Concentrations[J]. ACS Sensors, 2020, 5(4): 970-977. doi: 10.1021/acssensors.9b02305 [17] LI Y Y, LI H D, FANG W K, et al. Amplification of the Fluorescence Signal with Clustered Regularly Interspaced Short Palindromic Repeats-Cas12a Based on Au Nanoparticle-DNAzyme Probe and On-Site Detection of Pb2+ Via the Photonic Crystal Chip[J]. ACS Sensors, 2022, 7(5): 1572-1580. doi: 10.1021/acssensors.2c00516 [18] XU S Q, WANG S T, GUO L, et al. Nanozyme-catalysed CRISPR-Cas12a system for the preamplification-free colorimetric detection of lead ion[J]. Analytica Chimica Acta, 2023, 1243: 340827. doi: 10.1016/j.aca.2023.340827 [19] YUE Y Y, WANG S T, JIN Q, et al. A triple amplification strategy using GR-5 DNAzyme as a signal medium for ultrasensitive detection of trace Pb2+ based on CRISPR/Cas12a empowered electrochemical biosensor[J]. Analytica Chimica Acta, 2023, 1263: 341241. doi: 10.1016/j.aca.2023.341241 [20] CHEN Y J, WU H, QIAN S W J, et al. Applying CRISPR/Cas system as a signal enhancer for DNAzyme-based lead ion detection[J]. Analytica Chimica Acta, 2022, 1192: 339356. doi: 10.1016/j.aca.2021.339356 [21] MA X C, SUO T Y, ZHAO F R, et al. Integrating CRISPR/Cas12a with strand displacement amplification for the ultrasensitive aptasensing of cadmium(II)[J]. Analytical and Bioanalytical Chemistry, 2023, 415(12): 2281-2289. doi: 10.1007/s00216-023-04650-6 [22] IWASAKI R S, BATEY R T. SPRINT: a Cas13a-based platform for detection of small molecules[J]. Nucleic Acids Research, 2020, 48(17): e101. doi: 10.1093/nar/gkaa673 [23] MA Y, MOU Q B, YAN P, et al. A highly sensitive and selective fluoride sensor based on a riboswitch-regulated transcription coupled with CRISPR-Cas13a tandem reaction[J]. Chemical Science, 2021, 12(35): 11740-11747. doi: 10.1039/D1SC03508H [24] ZHAO Y Q, ZHU L, DING Y X, et al. Simple and cheap CRISPR/Cas12a biosensor based on plug-and-play of DNA aptamers for the detection of endocrine-disrupting compounds[J]. Talanta, 2023, 263: 124761. doi: 10.1016/j.talanta.2023.124761 [25] WANG Y, PENG Y, LI S, et al. The development of a fluorescence/colorimetric biosensor based on the cleavage activity of CRISPR-Cas12a for the detection of non-nucleic acid targets[J]. Journal of Hazardous Materials, 2023, 449: 131044. doi: 10.1016/j.jhazmat.2023.131044 [26] LI Q, LI X B, ZHOU P X, et al. Split aptamer regulated CRISPR/Cas12a biosensor for 17beta-estradiol through a gap-enhanced Raman tags based lateral flow strategy[J]. Biosensors and Bioelectrons, 2022, 215: 114548. doi: 10.1016/j.bios.2022.114548 [27] HU J Y, SONG H J, ZHOU J, et al. Metal-Tagged CRISPR/Cas12a Bioassay Enables Ultrasensitive and Highly Selective Evaluation of Kanamycin Bioaccumulation in Fish Samples[J]. Analytical Chemistry, 2021, 93(42): 14214-14222. doi: 10.1021/acs.analchem.1c03094 [28] CHEN J H, SHI G, YAN C. Portable biosensor for on-site detection of kanamycin in water samples based on CRISPR-Cas12a and an off-the-shelf glucometer[J]. Science of The Total Environment, 2023, 872: 162279. doi: 10.1016/j.scitotenv.2023.162279 [29] LI X P, CHEN X J, MAO M X, et al. Accelerated CRISPR/Cas12a-based small molecule detection using bivalent aptamer[J]. Biosensors and Bioelectronics, 2022, 217: 114725. doi: 10.1016/j.bios.2022.114725 [30] LI D W, LING S, WU H S, et al. CRISPR/Cas12a-based biosensors for ultrasensitive tobramycin detection with single- and double-stranded DNA activators[J]. Sensors and Actuators B: Chemical, 2022, 355: 131329. doi: 10.1016/j.snb.2021.131329 [31] MAHAS A, WANG Q C, MARSIC T, et al. Development of Cas12a-Based Cell-Free Small-Molecule Biosensors via Allosteric Regulation of CRISPR Array Expression[J]. Analytical Chemistry, 2022, 94(11): 4617-4626. doi: 10.1021/acs.analchem.1c04332 [32] YEE B J, SHAFIQAH N F, MOHD-NAIM N F, et al. A CRISPR/Cas12a-based fluorescence aptasensor for the rapid and sensitive detection of ampicillin[J]. International Journal of Biological Macromolecules, 2023, 242(Pt 4): 125211. [33] HU J Y, ZHOU J, LIU R, et al. Element probe based CRISPR/Cas14 bioassay for non-nucleic-acid targets[J]. Chemical Communications, 2021, 57(80): 10423-10426. doi: 10.1039/D1CC03992J [34] ZHAO Y, WU W Q, TANG X Q, et al. A universal CRISPR/Cas12a-powered intelligent point-of-care testing platform for multiple small molecules in the healthcare, environment, and food[J]. Biosensors and Bioelectronics, 2023, 225: 115102. doi: 10.1016/j.bios.2023.115102 [35] LIANG M D, LI Z L, WANG W S, et al. A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules[J]. Nature Communications, 2019, 10(1): 3672. doi: 10.1038/s41467-019-11648-1 [36] FU R J, WANG Y W, LIU Y L, et al. CRISPR-Cas12a based fluorescence assay for organophosphorus pesticides in agricultural products[J]. Food Chemistry, 2022, 387: 132919. doi: 10.1016/j.foodchem.2022.132919 [37] LI Y, YANG F, YUAN R, et al. Electrochemiluminescence covalent organic framework coupling with CRISPR/Cas12a-mediated biosensor for pesticide residue detection[J]. Food Chemistry, 2022, 389: 133049. doi: 10.1016/j.foodchem.2022.133049 [38] LI L T, HONG F, PAN S X, et al. "Lollipop" particle counting immunoassay based on antigen-powered CRISPR-Cas12a dual signal amplification for the sensitive detection of deoxynivalenol in the environment and food samples[J]. Journal of Hazardous Materials, 2023, 455: 131573. doi: 10.1016/j.jhazmat.2023.131573 [39] NIU C Q, XING X H, ZHANG C. A novel strategy for analyzing aptamer dominated sites and detecting AFB1 based on CRISPR–Cas12a[J]. Sensors & Diagnostics, 2023, 2(1): 155-162. [40] MA X, ZHANG Y, QIAO X J, et al. Target-Induced AIE Effect Coupled with CRISPR/Cas12a System Dual-Signal Biosensing for the Ultrasensitive Detection of Gliotoxin[J]. Analytical Chemistry, 2023, 95(31): 11723-11731. doi: 10.1021/acs.analchem.3c01760 [41] MAO Z F, WANG X J, CHEN R P, et al. Upconversion-mediated CRISPR-Cas12a biosensing for sensitive detection of ochratoxin A[J]. Talanta, 2022, 242: 123232. doi: 10.1016/j.talanta.2022.123232 [42] LIU X, BU S J, FENG J Q, et al. Electrochemical biosensor for detecting pathogenic bacteria based on a hybridization chain reaction and CRISPR-Cas12a[J]. Analytical and Bioanalytical Chemistry, 2022, 414(2): 1073-1080. doi: 10.1007/s00216-021-03733-6 [43] WU Y P, CHANG D R, CHANG Y Y, et al. Nucleic Acid Enzyme-Activated CRISPR-Cas12a With Circular CRISPR RNA for Biosensing[J]. Small, 2023, 19(41): e2303007. doi: 10.1002/smll.202303007 [44] SANTORO S W, JOYCE G F. A general purpose RNA-cleaving DNA enzyme[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(9): 4262-4266. [45] LI J, ZHENG W, KWON A H, et al. In vitro selection and characterization of a highly efficient Zn(II)-dependent RNA-cleaving deoxyribozyme[J]. Nucleic Acids Research, 2000, 28(2): 481-488. doi: 10.1093/nar/28.2.481 [46] GAO P, LIU B, PAN W, et al. A Spherical Nucleic Acid Probe Based on the Au–Se Bond[J]. Analytical Chemistry, 2020, 92(12): 8459-8463. doi: 10.1021/acs.analchem.0c01204 [47] CUTLER J I, AUYEUNG E, MIRKIN C A. Spherical Nucleic Acids[J]. Journal of the American Chemical Society, 2012, 134(3): 1376-1391. doi: 10.1021/ja209351u [48] CHEN Y, CHEN L, OU Y, et al. DNAzyme-based biosensor for Cu2+ ion by combining hybridization chain reaction with fluorescence resonance energy transfer technique[J]. Talanta, 2016, 155: 245-249. doi: 10.1016/j.talanta.2016.04.057 [49] SARAN R, LIU J W. A Silver DNAzyme[J]. Analytical Chemistry, 2016, 88(7): 4014-4020. doi: 10.1021/acs.analchem.6b00327 [50] ZHOU W H, VAZIN M, YU T M, et al. In Vitro Selection of Chromium-Dependent DNAzymes for Sensing Chromium(III) and Chromium(VI)[J]. Chemistry, 2016, 22(28): 9835-9840. doi: 10.1002/chem.201601426 [51] Wu Y T, Torabi S F, Lake R J, et al. Simultaneous Fe2+/Fe3+ imaging shows Fe3+ over Fe2+ enrichment in Alzheimer's disease mouse brain[J]. Science Advances, 2023, 9(16): eade7622. doi: 10.1126/sciadv.ade7622 [52] 郑星, 马明, 崔力, 等. 应用于环境分析的切割RNA的脱氧核酶研究进展[J]. 化学通报, 2022, 85(7): 770-780. ZHENG X, MA M, CUI L, et al. Advances in RNA-Cleaving DNAzymes for Environmental Analysis[J]. Chemistry, 2022, 85(7): 770-780 (in Chinese).
[53] RAJENDRAN M, ELLINGTON A D. Selection of fluorescent aptamer beacons that light up in the presence of zinc[J]. Analytical and Bioanalytical Chemistry, 2008, 390(4): 1067-1075. doi: 10.1007/s00216-007-1735-8 [54] WANG H Y, CHENG H, WANG J N, et al. Selection and characterization of DNA aptamers for the development of light-up biosensor to detect Cd(II)[J]. Talanta, 2016, 154: 498-503. doi: 10.1016/j.talanta.2016.04.005 [55] WU Y G, ZHAN S S, WANG L M, et al. Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles[J]. Analyst, 2014, 139(6): 1550-1561. doi: 10.1039/C3AN02117C [56] CHEN Y, LI H H, GAO T, et al. Selection of DNA aptamers for the development of light-up biosensor to detect Pb(II)[J]. Sensors and Actuators B: Chemical, 2018, 254: 214-221. doi: 10.1016/j.snb.2017.07.068 [57] WRZESINSKI J, CIESIOLKA J. Characterization of structure and metal ions specificity of Co2+-binding RNA aptamers[J]. Biochemistry, 2005, 44(16): 6257-6268. doi: 10.1021/bi047397u [58] QU H, CSORDAS A T, WANG J P, et al. Rapid and Label-Free Strategy to Isolate Aptamers for Metal Ions[J]. ACS Nano, 2016, 10(8): 7558-7565. doi: 10.1021/acsnano.6b02558 [59] 王斌, 邓述波, 黄俊, 等. 我国新兴污染物环境风险评价与控制研究进展[J]. 环境化学, 2013, 32(7): 1129-1136. doi: 10.7524/j.issn.0254-6108.2013.07.003 WANG B, DENG S B, HUANG J, et al. Environmental risk assessment and control of emerging contaminants in china[J]. Environmental Chemistry, 2013, 32(7): 1129-1136 (in Chinese). doi: 10.7524/j.issn.0254-6108.2013.07.003
[60] ZHUO Z J, YU Y Y, WANG M L, et al. Recent Advances in SELEX Technology and Aptamer Applications in Biomedicine[J]. International Journal of Molecular Sciences, 2017, 18(10): 2142. doi: 10.3390/ijms18102142 [61] 陈慧甜, 孙清, 时国庆, 等. 核酸适配体在环境分析中的应用[J]. 环境化学, 2015, 34(1): 89-96. doi: 10.7524/j.issn.0254-6108.2015.01.2014101401 CHEN H T, SUN Q, SHI G Q, et al. Application of aptamers to environmental analysis[J]. Environmental Chemistry, 2015, 34(1): 89-96 (in Chinese). doi: 10.7524/j.issn.0254-6108.2015.01.2014101401
[62] 孟雪洁, 张瑜, 刘京华, 等. 纳米金-适配体电化学传感器用于环境水样中双酚A检测[J]. 环境化学, 2023, 42(2): 379-387. doi: 10.7524/j.issn.0254-6108.2021102403 MENG X J, ZHANG Y, LIU J H, et al. Gold nanoparticles-aptamer electrochemical sensor for detection of bisphenol A in environmental waters[J]. Environmental Chemistry, 2023, 42(2): 379-387 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021102403
[63] LIU H M, LU A X, FU H L, et al. Affinity capture of aflatoxin B(1) and B(2) by aptamer-functionalized magnetic agarose microspheres prior to their determination by HPLC[J]. Mikrochimica Acta, 2018, 185(7): 326. doi: 10.1007/s00604-018-2849-8 [64] CAI S D, YAN J H, XIONG H J, et al. Investigations on the interface of nucleic acid aptamers and binding targets[J]. Analyst, 2018, 143(22): 5317-5338. doi: 10.1039/C8AN01467A [65] LEI Z, LEI P, GUO J F, et al. Recent advances in nanomaterials-based optical and electrochemical aptasensors for detection of cyanotoxins[J]. Talanta, 2022, 248: 123607. doi: 10.1016/j.talanta.2022.123607 [66] MONDAL B, RAMLAL S, LAVU P S R, et al. A combinatorial systematic evolution of ligands by exponential enrichment method for selection of aptamer against protein targets[J]. Applied Microbiology and Biotechnology, 2015, 99(22): 9791-9803. doi: 10.1007/s00253-015-6858-9 [67] PARK J Y, YANG K A, CHOI Y J, et al. Novel ssDNA aptamer-based fluorescence sensor for perfluorooctanoic acid detection in water[J]. Environment International, 2022, 158: 107000. doi: 10.1016/j.envint.2021.107000 [68] CHEN J H, SHI G, YAN C. Visual Test Paper for on-Site Polychlorinated Biphenyls Detection and Its Logic Gate Applications[J]. Analytical chemistry, 2021, 93(46): 15438-15444. doi: 10.1021/acs.analchem.1c03309 [69] CHEN Y Q, WANG Z M, LIU S Y, et al. A highly sensitive and group-targeting aptasensor for total phthalate determination in the environment[J]. Journal of Hazardous Materials, 2021, 412: 125174. doi: 10.1016/j.jhazmat.2021.125174 [70] 高羽菲, 甄建辉, 赵杰, 等. 比色法适配体传感器在抗生素检测中的研究进展 [J]. 分析实验室, 2023, 1—18. GAO Y F, ZHEN J H, ZHAO J, et al. Advances in antibiotics detection based on colorimetric aptasensors[J]. Chinese Journal of Analysis Laboratory, 2023, 1-18 (in Chinese).
[71] XU G H, WANG C, YU H, et al. Structural basis for high-affinity recognition of aflatoxin B1 by a DNA aptamer[J]. Nucleic Acids Research, 2023, 51(14): 7666-7674. doi: 10.1093/nar/gkad541 [72] MCCONNELL E M, NGUYEN J, LI Y F. Aptamer-Based Biosensors for Environmental Monitoring[J]. Frontiers in Chemistry, 2020, 8: 434. doi: 10.3389/fchem.2020.00434 [73] CHANG T J, HE S S, AMINI R, et al. Functional Nucleic Acids Under Unusual Conditions[J]. ChemBioChem, 2021, 22(14): 2368-2383. doi: 10.1002/cbic.202100087 [74] ACKERMAN C M, MYHRVOLD C, THAKKU S G, et al. Massively multiplexed nucleic acid detection with Cas13[J]. Nature, 2020, 582(7811): 277-282. doi: 10.1038/s41586-020-2279-8 [75] ALI M M, WOLFE M, TRAM K, et al. A DNAzyme‐Based Colorimetric Paper Sensor for Helicobacter pylori[J]. Angewandte Chemie International Edition, 2019, 58(29): 9907-9911. doi: 10.1002/anie.201901873 [76] ROTHENBROKER M, MCCONNELL E M, GU J, et al. Selection and Characterization of an RNA-Cleaving DNAzyme Activated by Legionella pneumophila[J]. Angewandte Chemie International Edition, 2021, 60(9): 4782-4788. doi: 10.1002/anie.202012444 [77] ZHOU Q B, ZHANG G X, WU Y P, et al. In Vitro Selection of M2+-Independent, Fast-Responding Acidic Deoxyribozymes for Bacterial Detection[J]. Journal of the American Chemical Society, 2023, 145(39): 21370-21377. doi: 10.1021/jacs.3c06155 [78] CHANG T J, LI G P, CHANG D R, et al. An RNA‐Cleaving DNAzyme That Requires an Organic Solvent to Function[J]. Angewandte Chemie International Edition, 2023, 62(42): e202310941. doi: 10.1002/anie.202310941