-
农业面源污染,从狭义上讲,是指在农业生产活动中,氮、磷等物质在降水或灌溉过程中,通过农田地表径流、壤中流、农田排水和地下渗漏,进入水体而造成的水体污染[1],农业面源污染已成为影响水环境质量的主要污染形式之一. 2020年发布的《第二次全国污染源普查公报》显示,我国农业源水污染物排放量中化学需氧量、总氮、总磷分别为
1067.13 万t、141.49 万t、21.20 万t,分别占全国水污染物排放量的49.8%、46.5%、67.2%. 与10年前相比,农业源化学需氧量、总氮、总磷排放分别下降了19%、48%和25%(见图1),农业生产实现了“增产又减污”,但农业源排放占比仍然较高. 需要指出的是,以上农业源排放量并不等于实际入河湖的量.不同于点源污染,农业面源污染有其自身的特点:一是排放形式具有分散性. 与点源污染集中排放不同,农业面源污染来源分散多样,没有明确的排污口,地理边界和位置难以识别和确定;二是随机性和不确定性强. 农业面源污染的发生受自然地理条件、水文气候特征等因素影响,水污染物向土壤和水体运移过程中,呈现时间上的随机性和空间上的不确定性;三是进入环境过程具有间接性. 农业面源污染受到生物地球化学转化和水文传输过程的共同影响,农业生产残留的氮磷等元素通常会在土壤中累积,并缓慢向外环境释放,对受纳水体环境质量的影响存在滞后性;四是具有资源性. 以畜禽粪污为例,1 t畜禽粪污有机质含量约25 kg,氮磷含量约4 kg,若能很好利用对农业生产是一种资源,处理不当进入受纳水体或在土壤中过量累积,才是污染物[2].
近年来,农业农村部聚焦重点区域和关键环节,不断加强农业面源污染治理工作. 2021年,印发实施《“十四五”重点流域农业面源污染综合治理建设规划》,围绕化肥农药减量化、秸秆综合利用、畜禽粪污资源化利用、地膜科学使用回收开展行动试点,特别是,在长江经济带、黄河流域实施农业面源污染综合治理示范项目,推动源头减量、过程拦截、末端治理、循环利用全链条防治,减少农业面源污染排放. 2021年,生态环境部、农业农村部印发《农业面源污染治理与监督指导实施方案(试行)》,明确了深入推进农业面源污染防治、加强农业面源污染治理监督管理. 各项工作取得积极成效,我国农业生态环境持续改善,但农业面源污染量大面广的基本态势尚未根本扭转,治理工作还处在“治存量、遏增量”的关口,个别地方和典型流域农业面源污染问题依然突出. 同时,地方和科研院所关于农业面源污染形成过程、监测核算方法等的试验研究逐渐增多[3 − 8],认识逐步深入,但现行的监测方法手段,特别是从流域尺度的监测能力还比较薄弱、本地化模型及参数还需要进一步完善优化,为说清楚农业面源污染入水体负荷以及流域农业面源污染综合治理提供技术支撑. 本文梳理了农业面源污染形成过程、监测核算常用的研究方法,探讨了当前研究存在的技术问题并对未来的研究方向进行了展望,以期为农业面源污染治理实践提供科学参考.
我国农业面源污染监测研究进展与发展建议
Research progress and development proposals for monitoring agricultural non-point source pollution in China
-
摘要: 针对农业面源污染排放形式分散、随机性和不确定性强、进入环境过程具有间接性等特点,本文梳理了农业面源污染形成过程、监测核算常用研究方法,剖析了目前农业面源污染监测评估在技术方面存在的难点和问题,并提出完善相关监测制度、统筹多尺度监测、优化监测方法、设立研发项目、深化结果应用等方面建议,以期为农业面源污染治理实践提供参考借鉴,助力乡村生态振兴和农业绿色发展.Abstract: According to the characteristics of scattered, randomness and indirect nature of agricultural non-point source pollution emissions, this paper examines the formation process and research methods for monitoring and accounting. It delves into the technical challenges and issues currently faced in monitoring and assessing agricultural non-point source pollution. Based on these insights, recommendations are made to improve monitoring systems, integrate multi-scale monitoring, optimize monitoring methods, establish research and development projects, and deepen the application of results. The aim is to provide practical guidance for the treatment of agricultural non-point source pollution, thereby supporting rural ecological revitalization and green agricultural development.
-
[1] 孔嘉鑫, 姜仁楠, 范贝贝, 等. 农业面源污染特征及治理对策[J]. 环境科学与管理, 2016, 41(5): 85-88. doi: 10.3969/j.issn.1673-1212.2016.05.021 KONG J X, JIANG R N, FAN B B, et al. Research and management of agricultural non-point source pollution[J]. Environmental Science and Management, 2016, 41(5): 85-88 (in Chinese). doi: 10.3969/j.issn.1673-1212.2016.05.021
[2] DAI F Y, FAN B Q, LI J G, et al. Fate of 15N-labelled urea as affected by long-term manure substitution[J]. Science of the Total Environment, 2023, 893: 164924. doi: 10.1016/j.scitotenv.2023.164924 [3] DONG Z Z, WU L H, CHAI J, et al. Effects of nitrogen application rates on rice grain yield, nitrogen-use efficiency, and water quality in paddy field[J]. Communications in Soil Science and Plant Analysis, 2015, 46: 1579-1594. doi: 10.1080/00103624.2015.1045595 [4] 胡德秀, 李依江, 李立, 等. 基于SWAT模型的渭河咸阳-西安段非点源污染削减措施研究[J]. 西北农林科技大学学报(自然科学版), 2020, 48(10): 127-136,145. HU D X, LI Y J, LI L, et al. Reduction scenarios of non-point source pollution in Xianyang-Xi’an section of Weihe River Basin based on SWAT[J]. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(10): 127-136,145 (in Chinese).
[5] 胡晴, 郭怀成, 王雨琪, 等. 基于改进输出系数模型的农业源污染物负荷核算[J]. 北京大学学报(自然科学版), 2021, 57(4): 739-748. HU Q, GUO H C, WANG Y Q, et al. Estimation of agricultural non-point source pollution loads based on improved export coefficient model[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(4): 739-748 (in Chinese).
[6] 华玲玲, 张富林, 翟丽梅, 等. 江汉平原水稻季灌排单元沟渠中氮磷变化特征及其环境风险[J]. 环境科学, 2018, 39(6): 2715-2723. HUA L L, ZHANG F L, ZHAI L M, et al. Characteristics of nitrogen and phosphorus concentration dynamics in natural ditches under an irrigation-drainage unit in the Jianghan Plain[J]. Environmental Science, 2018, 39(6): 2715-2723 (in Chinese).
[7] 杨林章. 我国农田面源污染治理的思路与技术[J]. 民主与科学, 2018(5): 16-18. doi: 10.3969/j.issn.1003-0026.2018.05.004 YANG L Z. Thoughts and technologies of farmland non-point source pollution control in China[J]. Democracy & Science, 2018(5): 16-18 (in Chinese). doi: 10.3969/j.issn.1003-0026.2018.05.004
[8] 张晴雯, 张惠, 易军, 等. 青铜峡灌区水稻田化肥氮去向研究[J]. 环境科学学报, 2010, 30(8): 1707-1714. ZHANG Q W, ZHANG H, YI J, et al. The fate of fertilizer-derived nitrogen in a rice field in the Qingtongxia irrigation area[J]. Acta Scientiae Circumstantiae, 2010, 30(8): 1707-1714 (in Chinese).
[9] 农民日报. 种植业高质量发展成效显著 [EB/OL]. [2022-12-24]. [10] SOARES J R, CANTARELLA H, de CAMPOS MENEGALE M L. Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors[J]. Soil Biology and Biochemistry, 2012, 52: 82-89. doi: 10.1016/j.soilbio.2012.04.019 [11] 田玉华, 尹斌, 贺发云, 等. 太湖地区水稻季氮肥的作物回收和损失研究[J]. 植物营养与肥料学报, 2009, 15(1): 55-61. doi: 10.3321/j.issn:1008-505X.2009.01.008 TIAN Y H, YIN B, HE F Y, et al. Recovery by crop and loss of nitrogen fertilizer applied in rice season in Taihu Lake Region[J]. Plant Nutrition and Fertilizer Science, 2009, 15(1): 55-61 (in Chinese). doi: 10.3321/j.issn:1008-505X.2009.01.008
[12] JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041-3046. [13] 赵荣芳, 陈新平, 张福锁. 华北地区冬小麦-夏玉米轮作体系的氮素循环与平衡[J]. 土壤学报, 2009, 46(4): 684-697. doi: 10.3321/j.issn:0564-3929.2009.04.017 ZHAO R F, CHEN X P, ZHANG F S. Nitrogen cycling and balance in winter-wheat-summer-maize rotation system in Northern China Plain[J]. Acta Pedologica Sinica, 2009, 46(4): 684-697 (in Chinese). doi: 10.3321/j.issn:0564-3929.2009.04.017
[14] COX F R, HENDRICKS S E. Soil test phosphorus and clay content effects on runoff water quality[J]. Journal of Environmental Quality, 2000, 29(5): 1582-1586. [15] WEI Q S, ZHU G F, WU P, et al. Distributions of typical contaminant species in urban short-term storm runoff and their fates during rain events: A case of Xiamen City[J]. Journal of Environmental Sciences, 2010, 22(4): 533-539. doi: 10.1016/S1001-0742(09)60138-8 [16] HAN C W, XU S G, LIU J W, et al. Nonpoint-source nitrogen and phosphorus behavior and modeling in cold climate: A review[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2010, 62(10): 2277-2285. doi: 10.2166/wst.2010.464 [17] PAN S H, LIU D D, WANG Z L, et al. Runoff responses to climate and land use/cover changes under future scenarios[J]. Water, 2017, 9(7): 475. doi: 10.3390/w9070475 [18] 贾海燕, 雷阿林, 雷俊山, 等. 紫色土地区水文特征对硝态氮流失的影响研究[J]. 环境科学学报, 2006, 26(10): 1658-1664. doi: 10.3321/j.issn:0253-2468.2006.10.013 JIA H Y, LEI A L, LEI J S, et al. Nitrate-N loss effected by the runoff process in purple soil-a simulation study[J]. Acta Scientiae Circumstantiae, 2006, 26(10): 1658-1664 (in Chinese). doi: 10.3321/j.issn:0253-2468.2006.10.013
[19] 李琪, 陈利顶, 齐鑫, 等. 流域尺度农业磷流失危险性评价与关键源区识别方法[J]. 应用生态学报, 2007, 18(9): 1982-1986. LI Q, CHEN L D, QI X, et al. Catchment scale risk assessment and critical source area identification of agricultural phosphorus loss[J]. Chinese Journal of Applied Ecology, 2007, 18(9): 1982-1986 (in Chinese).
[20] 梁新强, 田光明, 李华, 等. 天然降雨条件下水稻田氮磷径流流失特征研究[J]. 水土保持学报, 2005, 19(1): 59-63. doi: 10.3321/j.issn:1009-2242.2005.01.015 LIANG X Q, TIAN G M, LI H, et al. Study on characteristic of nitrogen and phosphorus loss from rice field by natural rainfall runoff[J]. Journal of Soil Water Conservation, 2005, 19(1): 59-63 (in Chinese). doi: 10.3321/j.issn:1009-2242.2005.01.015
[21] 付月君, 王昌全, 李冰, 等. 稻田氮磷养分损失途径及影响因素研究进展[J]. 四川环境, 2015, 34(6): 162-167. doi: 10.3969/j.issn.1001-3644.2015.06.029 FU Y J, WANG C Q, LI B, et al. An overview on losing path of fertilizer nitrogen and phosphorus and their influencing factors in paddy field[J]. Sichuan Environment, 2015, 34(6): 162-167 (in Chinese). doi: 10.3969/j.issn.1001-3644.2015.06.029
[22] 李高明, 铁柏清, 李杰峰, 等. 湖南典型土壤类型和耕作方式的氮磷损失特征研究[J]. 湖南农业科学, 2009(4): 52-54. doi: 10.3969/j.issn.1006-060X.2009.04.017 LI G M, TIE B Q, LI J F, et al. Study on nitrogen and phosphorus loss character of typical agrotype and cultivation in Hunan[J]. Hunan Agricultural Sciences, 2009(4): 52-54 (in Chinese). doi: 10.3969/j.issn.1006-060X.2009.04.017
[23] BIRGAND F, SKAGGS W, CHESCHEIR C, et al. Nitrogen removal in streams of agricultural catchments literature review[J]. Critical Reviews in Environmental Science and Technology, 2007, 37: 381. doi: 10.1080/10643380600966426 [24] HOWARTH R, SWANEY D, BILLEN G, et al. Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate[J]. Frontiers in Ecology and the Environment, 2012, 10(1): 37-43. doi: 10.1890/100178 [25] BETTEZ N D, DUNCAN J M, GROFFMAN P M, et al. Climate variation overwhelms efforts to reduce nitrogen delivery to coastal waters[J]. Ecosystems, 2015, 18(8): 1319-1331. doi: 10.1007/s10021-015-9902-9 [26] WU L, PENG M L, QIAO S S, et al. Assessing impacts of rainfall intensity and slope on dissolved and adsorbed nitrogen loss under bare loessial soil by simulated rainfalls[J]. Catena, 2018, 170: 51-63. doi: 10.1016/j.catena.2018.06.007 [27] YANG T, WANG Q J, WU L S, et al. A mathematical model for soil solute transfer into surface runoff as influenced by rainfall detachment[J]. Science of the Total Environment, 2016, 557: 590-600. [28] 王晓玲, 乔斌, 李松敏, 等. 生态沟渠对水稻不同生长期降雨径流氮磷的拦截效应研究[J]. 水利学报, 2015, 46(12): 1406-1413. WANG X L, QIAO B, LI S M, et al. Studies on the interception effects of ecological ditch on nitrogen and phosphorus in the rainfall runoff of different rice growth period[J]. Journal of Hydraulic Engineering, 2015, 46(12): 1406-1413 (in Chinese).
[29] 余红兵, 肖润林, 杨知建, 等. 灌溉和降雨条件下生态沟渠氮、磷输出特征研究[J]. 长江流域资源与环境, 2014, 23(5): 686-692. YU H B, XIAO R L, YANG Z J, et al. Study on the characteristics of nitrogen and phosphorus transportation through ecological ditch during irrigation and rainfall[J]. Resources and Environment in the Yangtze Basin, 2014, 23(5): 686-692 (in Chinese).
[30] 张树楠, 肖润林, 刘锋, 等. 生态沟渠对氮、磷污染物的拦截效应[J]. 环境科学, 2015, 36(12): 4516-4522. ZHANG S N, XIAO R L, LIU F, et al. Interception effect of vegetated drainage ditch on nitrogen and phosphorus from drainage ditches[J]. Environmental Science, 2015, 36(12): 4516-4522 (in Chinese).
[31] 尹澄清, 毛战坡. 用生态工程技术控制农村非点源水污染[J]. 应用生态学报, 2002, 13(2): 229-232. doi: 10.3321/j.issn:1001-9332.2002.02.025 YIN C Q, MAO Z P. Nonpoint pollution control for rural areas of China with ecological engineering technologies[J]. Chinese Journal of Applied Ecology, 2002, 13(2): 229-232 (in Chinese). doi: 10.3321/j.issn:1001-9332.2002.02.025
[32] 李中利, 燕燕, 邵正浩. 基于稻田退水“零直排” 模式的农业面源污染治理路径[J]. 浙江农业科学, 2021, 62(12): 2513-2515. LI Z L, YAN Y, SHAO Z H. Government way of agricultural non-point source pollution based on zero-direct discharge for rice field water[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(12): 2513-2515 (in Chinese).
[33] WOLLHEIM W M, BERNAL S, BURNS D A, et al. River network saturation concept: Factors influencing the balance of biogeochemical supply and demand of river networks[J]. Biogeochemistry, 2018, 141(3): 503-521. doi: 10.1007/s10533-018-0488-0 [34] 王桂苓, 马友华, 孙兴旺, 等. 巢湖流域麦稻轮作农田径流氮磷流失研究[J]. 水土保持学报, 2010, 24(2): 6-10,29. WANG G L, MA Y H, SUN X W, et al. Study of nitrogen and phosphorus runoff in wheat-rice rotation farmland in Chao Lake basin[J]. Journal of Soil and Water Conservation, 2010, 24(2): 6-10,29 (in Chinese).
[35] 高月香, 李想, 高田田, 等. 同位素示踪解析北澄子河流域硝态氮污染贡献[J]. 农业环境科学学报, 2022, 41(10): 2269-2276. doi: 10.11654/jaes.2022-0205 GAO Y X, LI X, GAO T T, et al. Isotopic tracer analysis of nitrate nitrogen pollution contribution in the Beichengzi River Basin, China[J]. Journal of Agro-Environment Science, 2022, 41(10): 2269-2276 (in Chinese). doi: 10.11654/jaes.2022-0205
[36] 刘方谊, 夏颖, 黄敏, 等. 湖北省三峡库区不同种植模式下农田地表径流氮磷流失特征[J]. 农业资源与环境学报, 2018, 35(6): 550-558. LIU F Y, XIA Y, HUANG M, et al. Characteristics of nitrogen and phosphorus losses from farmlands through surface runoff under different cropping patterns in the Three Gorges Reservoir Area of Hubei Province[J]. Journal of Agricultural Resources and Environment, 2018, 35(6): 550-558 (in Chinese).
[37] 马力, 卜兆宏, 梁文广, 等. 基于USLE原理和3S技术的水土流失定量监测方法及其应用研究[J]. 土壤学报, 2019, 56(3): 602-614. doi: 10.11766/trxb201805310168 MA L, BU Z H, LIANG W G, et al. Method for quantitative monitoring of soil erosion based on USLE principle and 3S technology and its application[J]. Acta Pedologica Sinica, 2019, 56(3): 602-614 (in Chinese). doi: 10.11766/trxb201805310168
[38] 管飞, 马友华, 张东红, 等. 农业面源污染负荷空间分布及风险评价研究进展[J]. 中国农学通报, 2017, 33(30): 61-66. doi: 10.11924/j.issn.1000-6850.casb16090062 GUAN F, MA Y H, ZHANG D H, et al. Agricultural non-point source pollution loads: Spatial distribution and risk assessment[J]. Chinese Agricultural Science Bulletin, 2017, 33(30): 61-66 (in Chinese). doi: 10.11924/j.issn.1000-6850.casb16090062
[39] HOWARTH R W, BILLEN G, SWANEY D, et al. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences[J]. Biogeochemistry, 1996, 35(1): 75-139. doi: 10.1007/BF02179825 [40] HONG B, SWANEY D P, McCRACKIN M, et al. Advances in NANI and NAPI accounting for the Baltic drainage basin: Spatial and temporal trends and relationships to watershed TN and TP fluxes[J]. Biogeochemistry, 2017, 133(3): 245-261. doi: 10.1007/s10533-017-0330-0 [41] 张汪寿, 苏静君, 杜新忠, 等. 1990—2010年淮河流域人类活动净氮输入[J]. 应用生态学报, 2015, 26(6): 1831-1839. ZHANG W S, SU J J, DU X Z, et al. Net anthropogenic nitrogen input to Huaihe River Basin, China during 1990-2010[J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1831-1839 (in Chinese).
[42] JOHNES P J. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: The export coefficient modelling approach[J]. Journal of Hydrology, 1996, 183(3/4): 323-349. [43] 杨佳磊, 张瑞, 张银意, 等. 1980—2018年太湖流域非点源氮磷负荷变化研究[J]. 环境保护科学, 2022, 48(6): 93-101. YANG J L, ZHANG R, ZHANG Y Y, et al. Study on change of non-point source nitrogen and phosphorus load in Taihu Lake Basin from 1980 to 2018[J]. Environmental Protection Science, 2022, 48(6): 93-101 (in Chinese).
[44] 王雪蕾, 王新新, 朱利, 等. 巢湖流域氮磷面源污染与水华空间分布遥感解析[J]. 中国环境科学, 2015, 35(5): 1511-1519. doi: 10.3969/j.issn.1000-6923.2015.05.031 WANG X L, WANG X X, ZHU L, et al. Spatial analysis on diffuse pollution and algal bloom characteristic with remote sensing in Chao Lake Basin[J]. China Environmental Science, 2015, 35(5): 1511-1519 (in Chinese). doi: 10.3969/j.issn.1000-6923.2015.05.031