人工沉积物中四氧化三铁纳米颗粒对斑马鱼胚胎发育和氧化应激水平的影响

文婷, 隋彦伯, 周雅娜, 张赟, 魏晨曦. 人工沉积物中四氧化三铁纳米颗粒对斑马鱼胚胎发育和氧化应激水平的影响[J]. 生态毒理学报, 2021, 16(6): 191-200. doi: 10.7524/AJE.1673-5897.20210117001
引用本文: 文婷, 隋彦伯, 周雅娜, 张赟, 魏晨曦. 人工沉积物中四氧化三铁纳米颗粒对斑马鱼胚胎发育和氧化应激水平的影响[J]. 生态毒理学报, 2021, 16(6): 191-200. doi: 10.7524/AJE.1673-5897.20210117001
Wen Ting, Sui Yanbo, Zhou Yana, Zhang Yun, Wei Chenxi. Effects of Fe3O4 Nanoparticles on Development and Oxidative Stress in Zebrafish Embryo Exposed to Artificial Sediment[J]. Asian journal of ecotoxicology, 2021, 16(6): 191-200. doi: 10.7524/AJE.1673-5897.20210117001
Citation: Wen Ting, Sui Yanbo, Zhou Yana, Zhang Yun, Wei Chenxi. Effects of Fe3O4 Nanoparticles on Development and Oxidative Stress in Zebrafish Embryo Exposed to Artificial Sediment[J]. Asian journal of ecotoxicology, 2021, 16(6): 191-200. doi: 10.7524/AJE.1673-5897.20210117001

人工沉积物中四氧化三铁纳米颗粒对斑马鱼胚胎发育和氧化应激水平的影响

    作者简介: 文婷(1995-),女,硕士研究生,研究方向为生态毒理学,E-mail:1244380132@qq.com
    通讯作者: 魏晨曦, E-mail: weicx@hunnu.edu.cn
  • 基金项目:

    淡水鱼发育生物学国家重点实验室自主课题(20180118);湖南师范大学青年科学基金资助项目(31401)

  • 中图分类号: X171.5

Effects of Fe3O4 Nanoparticles on Development and Oxidative Stress in Zebrafish Embryo Exposed to Artificial Sediment

    Corresponding author: Wei Chenxi, weicx@hunnu.edu.cn
  • Fund Project:
  • 摘要: 由于天然水体中合成的四氧化三铁纳米颗粒(Fe3O4 NPs)含量未有可靠数据,因此就其安全阈值开展研究。本研究以模式动物斑马鱼为受试生物,将2 hpf的斑马鱼胚胎暴露在含有不同浓度Fe3O4 NPs的沉积物中,96 hpf后考察其对斑马鱼胚胎发育和氧化应激水平的影响。结果显示,随着沉积物中Fe3O4 NPs浓度的增加,斑马鱼胚胎及幼鱼的死亡率、畸形率呈现上升趋势,孵化率则呈现下降趋势。斑马鱼胚胎的死亡率、孵化率在0.8 mg·g-1 Fe3O4 NPs的暴露下开始显著下降(P<0.05),畸形率则在0.4 mg·g-1 Fe3O4 NPs暴露下开始显著上升(P<0.05)。96 hpf斑马鱼幼鱼体内活性氧(ROS)和丙二醛(MDA)含量随着沉积物中Fe3O4 NPs浓度的增加而升高。超氧化物歧化酶(SOD)活性在1.6 mg·g-1和3.2 mg·g-1 Fe3O4 NPs暴露下显著下降(P<0.05),总抗氧化能力(T-AOC)在Fe3O4 NPs最高浓度组(3.2 mg·g-1)显著下降(P<0.05)。随着沉积物中Fe3O4 NPs浓度的增加,96 hpf的斑马鱼幼鱼体内Fe3O4 NPs含量呈上升趋势,从0.4 mg·g-1 Fe3O4 NPs开始与对照组相比具有显著差异(P<0.05)。因此,沉积物中Fe3O4 NPs含量≤ 0.2 mg·g-1是安全的,≥ 0.4 mg·g-1是不安全的,沉积物中Fe3O4 NPs的安全阈值范围是0.2~0.4 mg·g-1
  • 加载中
  • Rejinold N S, Thomas R G, Muthiah M, et al. Breast tumor targetable Fe3O4 embedded thermo-responsive nanoparticles for radiofrequency assisted drug delivery[J]. Journal of Biomedical Nanotechnology, 2016, 12(1):43-55
    Wan Ibrahim W A, Nodeh H R, Aboul-Enein H Y, et al. Magnetic solid-phase extraction based on modified ferum oxides for enrichment, preconcentration, and isolation of pesticides and selected pollutants[J]. Critical Reviews in Analytical Chemistry, 2015, 45(3):270-287
    刘清凤. 松花江吉林省段表层沉积物中重金属污染研究[D]. 长春:东北师范大学, 2007:13-16 Liu Q F. Research on heavy metal pollution in the surficial sediments of Songhua River, Jilin Province area[D]. Changchun:Northeast Normal University, 2007:13

    -16(in Chinese)

    Förstner U. Sediment-associated contaminants-An overview of scientific bases for developing remedial options[J]. Hydrobiologia, 1987, 149(1):221-246
    Lee C, Kim J Y, Lee W I, et al. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli[J]. Environmental Science & Technology, 2008, 42(13):4927-4933
    Diao M H, Yao M S. Use of zero-valent iron nanoparticles in inactivating microbes[J]. Water Research, 2009, 43(20):5243-5251
    Xie Y X, Liu D J, Cai C L, et al. Size-dependent cytotoxicity of Fe3O4 nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells[J]. International Journal of Nanomedicine, 2016, 11:3557-3570
    Lei C, Zhang L Q, Yang K, et al. Toxicity of iron-based nanoparticles to green algae:Effects of particle size, crystal phase, oxidation state and environmental aging[J]. Environmental Pollution, 2016, 218:505-512
    Zhang Y, Zhu L, Zhou Y, et al. Accumulation and elimination of iron oxide nanomaterials in zebrafish (Danio rerio) upon chronic aqueous exposure[J]. Journal of Environmental Sciences, 2015, 30:223-230
    Musee N, Oberholster P J, Sikhwivhilu L, et al. The effects of engineered nanoparticles on survival, reproduction, and behaviour of freshwater snail, Physa acuta (Draparnaud, 1805)[J]. Chemosphere, 2010, 81(10):1196-1203
    Galloway T, Lewis C, Dolciotti I, et al. Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete[J]. Environmental Pollution, 2010, 158(5):1748-1755
    Kelly B C, Ikonomou M G, Blair J D, et al. Food web-specific biomagnification of persistent organic pollutants[J]. Science, 2007, 317(5835):236-239
    Burton G A Jr. Assessing the toxicity of freshwater sediments[J]. Environmental Toxicology and Chemistry, 1991, 10(12):1585-1627
    Dwivedi S, Siddiqui M A, Farshori N N, et al. Synthesis, characterization and toxicological evaluation of iron oxide nanoparticles in human lung alveolar epithelial cells[J]. Colloids and Surfaces B:Biointerfaces, 2014, 122:209-215
    Vale G, Mehennaoui K, Cambier S, et al. Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms:A critical overview[J]. Aquatic Toxicology, 2016, 170:162-174
    Organization for Economic Co-operation and Development (OECD). Test No. 233:Sediment-water chironomid life-cycle toxicity test using spiked water or spiked sediment[R]. Paris:OECD, 2010
    Salomons W. Sediments and water[J]. Environmental Technology Letters, 2015, 6(1-11):315-326
    Rezaee Ebrahim Saraee K, Abdi M R, Naghavi K, et al. Distribution of heavy metals in surface sediments from the South China Sea ecosystem, Malaysia[J]. Environmental Monitoring and Assessment, 2011, 183(1-4):545-554
    Linnik P M, Zubenko I B. Role of bottom sediments in the secondary pollution of aquatic environments by heavy-metal compounds[J]. Lakes and Reservoirs, 2000, 5(1):11-21
    Canesi L, Ciacci C, Balbi T. Interactive effects of nanoparticles with other contaminants in aquatic organisms:Friend or foe?[J]. Marine Environmental Research, 2015, 111:128-134
    Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel[J]. Science, 2006, 311(5761):622-627
    文文. 超小尺寸Fe3O4纳米粒的毒性研究[D]. 镇江:江苏大学, 2020:47-50 Wen W. Research on toxicity of ultra-small Fe3O4

    nanoparticles[D]. Zhenjiang:Jiangsu University, 2020:47-50(in Chinese)

    Kumari J, Kumar D, Mathur A, et al. Cytotoxicity of TiO2 nanoparticles towards freshwater sediment microorganisms at low exposure concentrations[J]. Environmental Research, 2014, 135:333-345
    陶维. 纳米银在湘江水体中的迁移转化及对沉积物重金属的影响研究[D]. 长沙:湖南大学, 2017:29-44 Tao W. Transformation of silver nanoparticles and impact on heavy metals of sediment in the Xiangjiang River[D]. Changsha:Hunan University, 2017:29

    -44(in Chinese)

    Lammel T, Thit A, Cui X J, et al. Trophic transfer of CuO NPs from sediment to worms (Tubifex tubifex) to fish (Gasterosteus aculeatus):A comparative study of dissolved Cu and NPs enriched with a stable isotope tracer (65Cu)[J]. Environmental Science:Nano, 2020, 7(8):2360-2372
    Goya G F, Berquó T S, Fonseca F C, et al. Static and dynamic magnetic properties of spherical magnetite nanoparticles[J]. Journal of Applied Physics, 2003, 94(5):3520-3528
    马萍, 杜娟, 罗清, 等. 纳米Fe3O4对小鼠肺细胞的氧化损伤[J]. 生态毒理学报, 2012, 7(1):44-48

    Ma P, Du J, Luo Q, et al. Oxidative damage of mouse lung cells induced by Fe3O4 nanoparticles[J]. Asian Journal of Ecotoxicology, 2012, 7(1):44-48(in Chinese)

    McCarthy J F, Burrus L W, Tolbert V R. Bioaccumulation of benzo(a)pyrene from sediment by fathead minnows:Effects of organic content, resuspension and metabolism[J]. Archives of Environmental Contamination and Toxicology, 2003, 45(3):364-370
    Dedeh A, Ciutat A, Treguer-Delapierre M, et al. Impact of gold nanoparticles on zebrafish exposed to a spiked sediment[J]. Nanotoxicology, 2015, 9(1):71-80
    汪冰,陈汉青,周晓艳,等. 四氧化三铁纳米材料暴露对果蝇卵子发生和胚胎发育时序的影响[C]. 广州:中国毒理学会第六届全国毒理学大会, 2013
    姜宇, 阎一林, 朱国兴, 等. 铁过载对斑马鱼成骨影响的机制[J]. 中国骨质疏松杂志, 2016, 22(6):713-717

    Jiang Y, Yan Y L, Zhu G X, et al. The effect and mechanism of iron overload on zebra fish osteogenesis[J]. Chinese Journal of Osteoporosis, 2016, 22(6):713-717(in Chinese)

    徐金, 刘绍明. 铁离子对大脑毒性的研究进展[J]. 医学综述, 2012, 18(15):2383-2385

    Xu J, Liu S M. Research progress of toxicity of iron ion to brain[J]. Medical Recapitulate, 2012, 18(15):2383-2385(in Chinese)

    Zhang H, Zhabyeyev P, Wang S H, et al. Role of iron metabolism in heart failure:From iron deficiency to iron overload[J]. Biochimica et Biophysica Acta-Molecular Basis of Disease, 2019, 1865(7):1925-1937
    Barhoumi L, Dewez D. Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris[J]. BioMed Research International, 2013, 2013:647974
  • 加载中
计量
  • 文章访问数:  1988
  • HTML全文浏览数:  1988
  • PDF下载数:  80
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-01-17
文婷, 隋彦伯, 周雅娜, 张赟, 魏晨曦. 人工沉积物中四氧化三铁纳米颗粒对斑马鱼胚胎发育和氧化应激水平的影响[J]. 生态毒理学报, 2021, 16(6): 191-200. doi: 10.7524/AJE.1673-5897.20210117001
引用本文: 文婷, 隋彦伯, 周雅娜, 张赟, 魏晨曦. 人工沉积物中四氧化三铁纳米颗粒对斑马鱼胚胎发育和氧化应激水平的影响[J]. 生态毒理学报, 2021, 16(6): 191-200. doi: 10.7524/AJE.1673-5897.20210117001
Wen Ting, Sui Yanbo, Zhou Yana, Zhang Yun, Wei Chenxi. Effects of Fe3O4 Nanoparticles on Development and Oxidative Stress in Zebrafish Embryo Exposed to Artificial Sediment[J]. Asian journal of ecotoxicology, 2021, 16(6): 191-200. doi: 10.7524/AJE.1673-5897.20210117001
Citation: Wen Ting, Sui Yanbo, Zhou Yana, Zhang Yun, Wei Chenxi. Effects of Fe3O4 Nanoparticles on Development and Oxidative Stress in Zebrafish Embryo Exposed to Artificial Sediment[J]. Asian journal of ecotoxicology, 2021, 16(6): 191-200. doi: 10.7524/AJE.1673-5897.20210117001

人工沉积物中四氧化三铁纳米颗粒对斑马鱼胚胎发育和氧化应激水平的影响

    通讯作者: 魏晨曦, E-mail: weicx@hunnu.edu.cn
    作者简介: 文婷(1995-),女,硕士研究生,研究方向为生态毒理学,E-mail:1244380132@qq.com
  • 淡水鱼发育生物学国家重点实验室, 湖南师范大学生命科学学院, 长沙 410081
基金项目:

淡水鱼发育生物学国家重点实验室自主课题(20180118);湖南师范大学青年科学基金资助项目(31401)

摘要: 由于天然水体中合成的四氧化三铁纳米颗粒(Fe3O4 NPs)含量未有可靠数据,因此就其安全阈值开展研究。本研究以模式动物斑马鱼为受试生物,将2 hpf的斑马鱼胚胎暴露在含有不同浓度Fe3O4 NPs的沉积物中,96 hpf后考察其对斑马鱼胚胎发育和氧化应激水平的影响。结果显示,随着沉积物中Fe3O4 NPs浓度的增加,斑马鱼胚胎及幼鱼的死亡率、畸形率呈现上升趋势,孵化率则呈现下降趋势。斑马鱼胚胎的死亡率、孵化率在0.8 mg·g-1 Fe3O4 NPs的暴露下开始显著下降(P<0.05),畸形率则在0.4 mg·g-1 Fe3O4 NPs暴露下开始显著上升(P<0.05)。96 hpf斑马鱼幼鱼体内活性氧(ROS)和丙二醛(MDA)含量随着沉积物中Fe3O4 NPs浓度的增加而升高。超氧化物歧化酶(SOD)活性在1.6 mg·g-1和3.2 mg·g-1 Fe3O4 NPs暴露下显著下降(P<0.05),总抗氧化能力(T-AOC)在Fe3O4 NPs最高浓度组(3.2 mg·g-1)显著下降(P<0.05)。随着沉积物中Fe3O4 NPs浓度的增加,96 hpf的斑马鱼幼鱼体内Fe3O4 NPs含量呈上升趋势,从0.4 mg·g-1 Fe3O4 NPs开始与对照组相比具有显著差异(P<0.05)。因此,沉积物中Fe3O4 NPs含量≤ 0.2 mg·g-1是安全的,≥ 0.4 mg·g-1是不安全的,沉积物中Fe3O4 NPs的安全阈值范围是0.2~0.4 mg·g-1

English Abstract

参考文献 (34)

返回顶部

目录

/

返回文章
返回