街区交通污染物光化学反应及其自然通风稀释

刘呈威, 赵福云. 街区交通污染物光化学反应及其自然通风稀释[J]. 环境化学, 2019, (9): 2008-2017. doi: 10.7524/j.issn.0254-6108.2018121702
引用本文: 刘呈威, 赵福云. 街区交通污染物光化学反应及其自然通风稀释[J]. 环境化学, 2019, (9): 2008-2017. doi: 10.7524/j.issn.0254-6108.2018121702
LIU Chengwei, ZHAO Fuyun. Photochemical reaction with traffic pollutants in street canyon and the dilution of natural ventilation[J]. Environmental Chemistry, 2019, (9): 2008-2017. doi: 10.7524/j.issn.0254-6108.2018121702
Citation: LIU Chengwei, ZHAO Fuyun. Photochemical reaction with traffic pollutants in street canyon and the dilution of natural ventilation[J]. Environmental Chemistry, 2019, (9): 2008-2017. doi: 10.7524/j.issn.0254-6108.2018121702

街区交通污染物光化学反应及其自然通风稀释

    通讯作者: 赵福云, E-mail: fyzhao@whu.edu.cn
  • 基金项目:

    国家自然科学基金(51778504)和深圳市科技局基础研究计划(JCYJ20160523160857948)资助.

Photochemical reaction with traffic pollutants in street canyon and the dilution of natural ventilation

    Corresponding author: ZHAO Fuyun, fyzhao@whu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(51778504)and Shenzhen Municipal Science and Technology Bureau of Basic Research Program(JCYJ20160523160857948).
  • 摘要: 随着城市化进程的加剧,汽车尾气在太阳辐射作用下发生光化学反应,生成的气态污染物NOx会在街区中扩散造成环境污染,这也是光化学烟雾形成的重要环节.本文通过数值模拟的方法,将风洞实验对比验证典型高宽比1的街区峡谷模型计算的可靠性和准确性,再运用RNG k-ε湍流模型耦合NOx化学反应模型进行数值计算,探究存在光化学反应下的气态污染物在城市六街区中的扩散迁移规律.结果发现,上游街区的光化学反应程度要大于下游街区,但是因为街区自身涡旋结构的流动以及自然通风的稀释作用会慢慢将生成气态污染物迁移到下游街区中,且气态污染物会在街区背风侧形成积聚达到一定的浓度后会沉积在整个街区中.
  • [1] 许文轩, 田永中, 肖悦,等. 华北地区空气质量空间分布特征及成因研究[J]. 环境科学学报, 2017, 37(8):3085-3096.

    XU W X, TIAN Y Z, XIAO Y, et al. Study on the spatial distribution characteristics and the drivers of AQI in North China[J]. Acta Scientiae Circumstantiae, 2017, 37(8):3085-3096(in Chinese)

    [2] 潘本锋, 程麟钧, 王建国,等. 京津冀地区臭氧污染特征与来源分析[J]. 中国环境监测, 2016, 32(5):17-23.

    PAN B F, CHENG L J, WANG J G, et al. Characteristics and source attribution of ozone pollution in Beijing-Tianjin-Hebei Region[J]. Environmental Monitoring in China, 2016, 32(5):17-23(in Chinese).

    [3] 叶春, 王嘉松, 李新令, 等. 街道峡谷内汽车排放污染物浓度分布的观测与数值模拟[J]. 环境化学, 2006, 25(3):363-366.

    YE C, WANG J S, LI X L, et al. Field measurement and numerical simulation for pollutant dispersion from vehicular exhaust in street canyon[J]. Environment Chemistry, 2006, 25(3):363-366(in Chinese)

    [4] 刘成伦, 杜娴. 重庆市机动车尾气对大气环境的影响分析及减缓措施[J]. 环境污染与防治, 2005, 27(7):523-526.

    LIU C L, DU X. Effect of vehicle exhaust gas on air pollution and its abatement measures in Chongqing[J]. Environmental Pollution Control, 2005, 27(7):523-526(in Chinese)

    [5] 刘峻峰, 李金龙, 白郁华. 大气光化学烟雾反应机理比较(Ⅰ)O3和NOx的比较[J]. 环境化学, 2001, 20(4):305-312.

    LIU J F, LI J L, BAI Y H. A Comparison of atmospheric photochemical mechanisms O3 and NOx[J]. Environment Chemistry, 2001, 20(4):305-312(in Chinese)

    [6] 崔刚龙, 张凤, 方维海. 挥发性有机物形成光化学烟雾的分子机理[J]. 科学中国人, 2016,31(11):95-96.

    CUI G L, ZHANG F, FANG W H. Molecular mechanism of volatile organic compounds forming photochemical smog[J]. Scientific Chinese, 2016,31(11):95-96(in Chinese)

    [7] 孙东. 二氧化氮气体浓度测量的积分光谱技术[D]. 哈尔滨:哈尔滨工业大学, 2011. SUN D. Integral spectroscopy dioxide gas concentration measurement[D]. Harbin:Harbin Institute of Technology,2011(in Chinese).
    [8] HAAGENSMIT A J. Chemistry and physiology of Los Angeles smog[J]. Industrial & Engineering Chemistry, 1952, 44(6):1342-1346.
    [9] 李朱辰. 洛杉矶光化学烟雾研究回顾与反思[J]. 环境保护与循环经济, 2016, 36(5):4-8.

    LI Z C. Retrospect and reflection on photochemical smoke research in Los Angeles[J]. Liaoning Urban and Rural Environmental Science & Technology, 2016, 36(5):4-8(in Chinese)

    [10] 姜峰, 王福伟. 夏季城市臭氧浓度变化规律分析[J]. 环境与可持续发展, 2016(1):62-64. JIANG F, WANG F W. Analysis of the changes of urban ozone concentration in summer[J]. Environment and Sustainable Development, 2016

    (1):62-64(in Chinese)

    [11] 徐晓斌. 我国霾和光化学污染观测研究进展[J]. 应用气象学报, 2016, 27(5):604-619.

    XU X B. Observational study advances of haze and photochemical pollution in China[J]. Journal of Applied Meteorological Science, 2016, 27(5):604-619(in Chinese)

    [12] PALMGREN F, BERKOWICZ R, HERTEL O, et al. Effects of reduction of NOx on the NO2, levels in urban streets[J]. Science of the Total Environment. 1996,189-190(6):409-415.
    [13] 姚青, 孙玫玲, 蔡子颖,等. 2009年天津城区地面O3和NOx的季节变化与相关性分析[J]. 环境化学, 2011, 30(9):1650-1656.

    YAO Q, SUN M L, CAI Z Y, et al. Seasonal variation and analysis of the relationship between NO, NO2 and O3 concentrations in Tianjin in 2009[J]. Environment Chemistry, 2011, 30(9):1650-1656(in Chinese)

    [14] CARPENTER L J, CLEMITSHAW K C, BURGESS R A, et al. Investigation and evaluation of the NOx/O3 photochemical steady state[J]. Atmospheric Environment, 1998, 32(19):3353-3365.
    [15] XIE S, ZHANG Y, QI L, et al. Spatial distribution of traffic-related pollutant concentrations in street canyons[J]. Atmospheric Environment, 2003, 37(23):3213-3224.
    [16] BAKER J, WALKER H L, CAI X. A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation[J]. Atmospheric Environment,2004, 38(39):6883-6892.
    [17] GRAWE D, CAI X M, HARRISON R M. Large eddy simulation of shading effects on NO2 and O3 concentrations within an idealized street canyon[J]. Atmospheric Environment, 2007, 41(34):7304-7314.
    [18] BAIK J J, KANG Y S, KIM J J. Modeling reactive pollutant dispersion in an urban street canyon[J]. Atmospheric Environment, 2007, 41(5):934-949.
    [19] 许睿, 王伟牧. 京津冀"毒雾"真相还原引广泛关注[J]. 品质·文化, 2013(3):7. XU R, WANG W M. The Beijing-Tianjin-Hebei "toxic fog" truth reduction has attracted extensive attention[J]. Quality & Culture, 2013(3

    ):7(in Chinese)

    [20] 周春艳,厉青,王中挺,等. 2005年-2014年京津冀对流层NO2柱浓度时空变化及影响因素[J]. 遥感学报, 2016,20(3):468-480.

    ZHOU C Y, LI Q, WANG Z T, et al. Spatio-temporal trend and changing factors of tropospheric NO2 column density in Beijing-Tianjin-Hebei region from 2005 to 2014[J]. Journal of Remote Sensing, 2016,20(3):468-480(in Chinese).

    [21] 李金凤. 珠江三角洲大气臭氧的变化趋势和敏感性分析[D].北京:北京大学, 2013. LI J F. Trends and Sensitivity analysis of atmospheric ozone in the pearl river delta[D]. Beijing:Peking University, 2013(in Chinese)
    [22] 张远航, 刘新罡. 雾霾污染的成因与治理[J]. 紫光阁, 2014(4):74-75. ZHANG Y H, LIU X G. Causes and treatment of haze pollution[J]. Ziguang, 2014

    (4):74-75(in Chinese)

    [23] BROWN M J, LAWSON R E, DECROIX D S, et al. Mean flow and turbulence measurement around a 2-D array of buildings in a wind tunnel[R]. AMS, Joint Conference on the Applications of Air Pollution Meteorology, 2000.
    [24] CASTRO I P, APSLEY D D. Flow and dispersion over topography:A comparison between numerical and laboratory data for two-dimensional flows[J]. Atmospheric Environment, 1997, 31(31):839-850.
    [25]
    [26] 刘小宇, 盛萍, 马晓凤, 等. 城市高密集人群区域机动车污染物时空分布及健康影响[J]. 交通信息与安全, 2018,36(1):119-128.

    LIU X Y, SEHNG P, MA X F, et al. Temporal and spatial distribution and health risks of vehicle pollution in high-populated urban areas[J]. Journal of Transport Information and Safety, 2018,36(1):119-128(in Chinese).

    [27] 申卫国, 王辉, 李志, 等. 北京市交通道路空气中NOx的污染现状及时空变化规律研究[J]. 环境工程学报, 2010, 4(5):1139-1142.

    SHEN W G, WANG H, LI Z, et al. Study on the current status of NOx pollution in the air of traffic roads in Beijing[J]. Chinese Journal of Environmental Engineering, 2010, 4(5):1139-1142(in Chinese).

    [28] OKE T R. Street design and urban canopy layer climate[J]. Energy and Buildings, 1988(11):103-113.
  • 期刊类型引用(2)

    1. 赵福云,黄志荣,刘宝,成瑾,徐颖. 理想山地城市街区内的风环境数值模拟. 建筑热能通风空调. 2022(01): 35-39 . 百度学术
    2. 赵福云,黄志荣,刘宝,成瑾,徐颖. 理想山地城市街区内的风环境数值模拟. 建筑热能通风空调. 2021(12): 35-39 . 百度学术

    其他类型引用(3)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 5.6 %DOWNLOAD: 5.6 %HTML全文: 89.0 %HTML全文: 89.0 %摘要: 5.3 %摘要: 5.3 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 65.6 %其他: 65.6 %Ashburn: 3.6 %Ashburn: 3.6 %Beijing: 18.1 %Beijing: 18.1 %Changchun: 0.3 %Changchun: 0.3 %Chennai: 0.3 %Chennai: 0.3 %Dalian: 0.3 %Dalian: 0.3 %Gulan: 0.3 %Gulan: 0.3 %Hangzhou: 2.1 %Hangzhou: 2.1 %Hohhot: 0.3 %Hohhot: 0.3 %London: 0.3 %London: 0.3 %Los Angeles: 0.3 %Los Angeles: 0.3 %Montreal: 0.3 %Montreal: 0.3 %Mountain View: 0.6 %Mountain View: 0.6 %Newark: 1.8 %Newark: 1.8 %Shanghai: 0.9 %Shanghai: 0.9 %Sydney: 0.3 %Sydney: 0.3 %Wuhan: 0.6 %Wuhan: 0.6 %XX: 2.4 %XX: 2.4 %Yinchuan: 0.3 %Yinchuan: 0.3 %Yuncheng: 0.3 %Yuncheng: 0.3 %Zhengzhou: 0.3 %Zhengzhou: 0.3 %杭州: 0.3 %杭州: 0.3 %深圳: 0.3 %深圳: 0.3 %漯河: 0.3 %漯河: 0.3 %其他AshburnBeijingChangchunChennaiDalianGulanHangzhouHohhotLondonLos AngelesMontrealMountain ViewNewarkShanghaiSydneyWuhanXXYinchuanYunchengZhengzhou杭州深圳漯河Highcharts.com
计量
  • 文章访问数:  1449
  • HTML全文浏览数:  1449
  • PDF下载数:  58
  • 施引文献:  5
出版历程
  • 收稿日期:  2018-12-17
刘呈威, 赵福云. 街区交通污染物光化学反应及其自然通风稀释[J]. 环境化学, 2019, (9): 2008-2017. doi: 10.7524/j.issn.0254-6108.2018121702
引用本文: 刘呈威, 赵福云. 街区交通污染物光化学反应及其自然通风稀释[J]. 环境化学, 2019, (9): 2008-2017. doi: 10.7524/j.issn.0254-6108.2018121702
LIU Chengwei, ZHAO Fuyun. Photochemical reaction with traffic pollutants in street canyon and the dilution of natural ventilation[J]. Environmental Chemistry, 2019, (9): 2008-2017. doi: 10.7524/j.issn.0254-6108.2018121702
Citation: LIU Chengwei, ZHAO Fuyun. Photochemical reaction with traffic pollutants in street canyon and the dilution of natural ventilation[J]. Environmental Chemistry, 2019, (9): 2008-2017. doi: 10.7524/j.issn.0254-6108.2018121702

街区交通污染物光化学反应及其自然通风稀释

    通讯作者: 赵福云, E-mail: fyzhao@whu.edu.cn
  • 武汉大学动力与机械学院, 武汉, 430072
基金项目:

国家自然科学基金(51778504)和深圳市科技局基础研究计划(JCYJ20160523160857948)资助.

摘要: 随着城市化进程的加剧,汽车尾气在太阳辐射作用下发生光化学反应,生成的气态污染物NOx会在街区中扩散造成环境污染,这也是光化学烟雾形成的重要环节.本文通过数值模拟的方法,将风洞实验对比验证典型高宽比1的街区峡谷模型计算的可靠性和准确性,再运用RNG k-ε湍流模型耦合NOx化学反应模型进行数值计算,探究存在光化学反应下的气态污染物在城市六街区中的扩散迁移规律.结果发现,上游街区的光化学反应程度要大于下游街区,但是因为街区自身涡旋结构的流动以及自然通风的稀释作用会慢慢将生成气态污染物迁移到下游街区中,且气态污染物会在街区背风侧形成积聚达到一定的浓度后会沉积在整个街区中.

English Abstract

参考文献 (28)

返回顶部

目录

/

返回文章
返回