酸性红37在UV/K2S2O8体系中的降解动力学和转化机制

胡倩, 阳海, 陶文杰, 庄帅, 宋洋, 区泽棠, 易兵. 酸性红37在UV/K2S2O8体系中的降解动力学和转化机制[J]. 环境化学, 2019, (12): 2869-2878. doi: 10.7524/j.issn.0254-6108.2019011703
引用本文: 胡倩, 阳海, 陶文杰, 庄帅, 宋洋, 区泽棠, 易兵.

酸性红37在UV/K2S2O8体系中的降解动力学和转化机制

[J]. 环境化学, 2019, (12): 2869-2878. doi: 10.7524/j.issn.0254-6108.2019011703
HU Qian, YANG Hai, TAO Wenjie, ZHUANG Shuai, SONG Yang, AU Chaktong, YI Bing. Degradation kinetic and transformation mechanism of acid red 37 in UV/K2S2O8 system[J]. Environmental Chemistry, 2019, (12): 2869-2878. doi: 10.7524/j.issn.0254-6108.2019011703
Citation: HU Qian, YANG Hai, TAO Wenjie, ZHUANG Shuai, SONG Yang, AU Chaktong, YI Bing.

Degradation kinetic and transformation mechanism of acid red 37 in UV/K2S2O8 system

[J]. Environmental Chemistry, 2019, (12): 2869-2878. doi: 10.7524/j.issn.0254-6108.2019011703

酸性红37在UV/K2S2O8体系中的降解动力学和转化机制

    通讯作者: 阳海, E-mail: yanghai1001@163.com
  • 基金项目:

    湖南省自然科学基金(2018JJ2079),湖南省教育厅项目(17B061,18C0698)和国家自然科学基金(21772035)资助

Degradation kinetic and transformation mechanism of acid red 37 in UV/K2S2O8 system

    Corresponding author: YANG Hai, yanghai1001@163.com
  • Fund Project: Supported by the Natural Science Foundation of Hunan(2018JJ2079),Hunan Provincial Department of Education Project(17B061, 18C0698) and National Natural Science Foundation of China(21772035).
  • 摘要:

    为了探索单偶氮染料Acid red 37(AR37)降解的可行性及在活性氧物种作用下可能的反应位点和迁移转化机制,采用光活化过硫酸盐技术并根据单因素试验和响应曲面法优化试验考察了底物浓度,K2S2O8用量和温度3个因素对AR37降解率的影响,得出AR37光催化降解的最优条件为:底物浓度90 μmol·L-1,K2S2O8用量8.47 mmol·L-1和温度36℃.最后,利用GCMS对AR37在UV/K2S2O8体系下降解中间产物进行初步的分离与分析,并结合AR37前线电子云密度(FEDs)的理论计算结果对其降解途径进行推导.研究发现AR37在·SO4-等活性氧物种作用下,C2、N8、N16、C17和C18等活性位点容易被自由基直接攻击或者发生电子转移反应,从而引起AR37分子中N=N和C-N键断裂后的进一步羟基化反应,是其主要的降解途径.

  • 加载中
  • [1] HE Y Z, WANG X J, XU J L, et al. Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents[J]. Bioresource Technology, 2013, 133:150-157.
    [2] KHANDEGAR V, SAROHA A K.Electrocoagulation for the treatment of textile industry effluent-a review[J]. Journal of Environmental Management, 2013, 128:949-963.
    [3] WANG X, CHENG X, SUN D, et al. Fate and transformation of naphthylaminesulfonic azo dye reactive black 5 during wastewater treatment process[J]. Environmental Science and Pollution Research International, 2014, 21(8):5713-5723.
    [4] PILLAI I M, GUPTA A K, TIWARI M. Multivariate optimization for electrochemical oxidation of methyl orange:Pathway identification and toxicity analysis[J]. Journal of Envirnmental Science & Health Part A:Toxic/Hazardous Substances & Environmental Engineering, 2014, 50(3):301-310.
    [5] MENG X, LIU G, ZHOU J, et al. Effects of redox mediators on azo dye decolorization by shewanella algae under saline conditions[J]. Bioresour Technology, 2014, 151:63-68.
    [6] 郎印海,刘伟,王慧.生物炭对水中五氯酚的吸附性能研究[J].中国环境科学, 2014, 34(8):2017-2023.

    LANG Y H, LIU W,WANG H. Adsorption efficiencies of pentachlorophenol from aqueous solution onto biochars[J]. China Environmental Science, 2014, 34(8):2017-2023(in Chinese).

    [7] SOON-AN O, KATSUHIRO U, DAISUKE I, et al. Simultaneous removal of color, organic compounds and nutrients in azo dye-containing wastewater using up-flow constructed wetland[J]. Journal of Hazardous Materials, 2009,165(1-3):696-703.
    [8] WEN D O, ZHILI D, TEIK T L. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal:current development, challenges and prospects[J]. Applied Catalysis B:Environmental, 2016, 194:169-201.
    [9] 马京帅, 吕文英, 刘国光, 等. 热活化过硫酸盐降解水中的普萘洛尔[J]. 环境化学, 2017, 36(2):221-228. MA J S, LV W Y, LIU G G, et al. Degradation of propranolol in aqueous solution by heat-activated persulfate[J]. Environmental Chemistry, 2017, 36(2):221-228(in Chinese). 10] 谷得明, 郭昌胜, 冯启言, 等. 基于硫酸根自由基的高级氧化技术及其在环境治理中的应用[J]. 环境化学, 2018, 37(11):2489-2508.

    GU D M, GUO C S, FENG Q Y, et al. Sulfate radical-based advanced oxidation processes and its application in environmental remediation[J]. Environmental Chmistry, 2018, 37(11):2489-2508(in Chinese).

    [10] LAURA W, MATZEK K E, Carter. Activated persulfate for organic chemical degradation:A review[J]. Chemosphere, 2016,151:178-188.
    [11] WANG X, WANG L G, LI J B, et al. Degradation of acid orange 7 by persulfate activated with zero valent iron in the presence of ultrasonic irradiation[J]. Separation and Purification Technology, 2014, 122(10):41-46.
    [12] 聂明华,吴乐良,余林兰,等.零价铁-过硫酸盐体系同时去除水中酸性橙7和磷[J].环境科学学报, 2018,38(11):4321-4332.

    NIE M H, WU L L,YU L L, et al. Simultaneous removal of acid orange 7 and phosphate from water using zero-valent iron activated persulfate system[J]. Acta Scientiae Circumstantiae, 2018,38(11):4321-4332(in Chinese).

    [13] 聂明华,徐文丽,张文静,等,Fe2+和零价铁活化过一硫酸盐降解酸性橙7[J]. 环境科学学报,2018,38(10):3997-4005.

    NIE M H, XUN W L, ZHANG W J, et al. Degradation of acid orange 7 by peroxymonosulfate activated by Fe2+ and zerovalent iron[J]. Acta Scientiae Circumstantiae, 2018, 38(10):3997-4005(in Chinese).

    [14] 王晨曦, 万金泉, 马邕文,等. 负载型颗粒活性炭催化过硫酸钠氧化降解橙黄G[J]. 环境工程学报,2015,9(1):213-218.

    WANG X C, WANG J Q, MA Y W,et al. Degradation of orange G catalyzed by Fe/GAC in the presence of persulfate[J].Chinese Journal of Environmental Engineering, 2015,9(1):213-218(in Chinese).

    [15] PETERNEL I. GRCIC I. KOPRIVANAC N. Degradation of reactive azo dye by UV/peroxodisulfate system:An experimental design approach[J]. Reacation Kinetics Mechanisms and Catalysis, 2010, 100:33-44.
    [16] ZHOU D N, CHEN L, ZHANG C B, et al. A novel photochemical system of ferrous sulfite complex:kinetics and mechanisms of rapid decolorization of acid orange 7 in aqueous solutions[J]. Water Research, 2014, 57:87-95.
    [17] SALARI D, DANESHVAR N, NIAEI A. The photo-oxidative destruction of C.I. basic yellow 2 using UV/S2O82- process in an annular photoreactor[J]. Journal of Environmental Science and Health A:Toxic/Hazardous Substances & Environmental Engineering, 2008, 43(6):657-663.
    [18] 胡倩, 阳海, 石妮,等. 光催化体系中噻虫胺降解动力学及机制[J]. 环境科学, 2016, 37(9):290-297.

    HU Q, YANG H, SHI N, et al. Kinetics and mechanistic investigation of the photocatalytic degradation of clothianidin[J].Environmental science, 2016, 37(9):290-297(in Chinese).

    [19] 易兵, 胡倩, 杨辉琼,等. 酸性红(AR37)光催化降解动力学的响应曲面法优化及其转化机制[J].纺织学报, 2018, 39(6):81-88.

    YI B, HU Q, YANG H Q, et al. Degradation kinetic optimization and mechanistic investigation of monoazo acid red 37 in photocatalytic system[J]. Journal of Textile Research,2018, 39(6):81-88(in Chinese).

    [20] YANG H, ZHUANG S, HU Q, et al. Competitive reactions of hydroxyl and sulfate radicals with sulfonamides in Fe2+/S2O82- system:reaction kinetics, degradation mechanism and acute toxicity[J]. Chemical Engineering Journal, 2018, 339:32-41.
    [21] YANG H, ZHOU W C, YANG L P, et al. Flutriafol degradation in Ag+/S2O82- aqueous system:An experimental and theoretical investigation[J]. Environment Protection Engineering, 2018, 44(2):57-72.
    [22] WANG X, WANG L, LI J, et al. Degradation of acid orange 7 by persulfate activated with zero valent iron in the presence of ultrasonic irradiation[J]. Separation and Purification Technology, 2014, 122:41-46.
    [23] 王艳, 杨硕, 张米雪, 等.ZnFe/BC活化过硫酸盐降解金橙Ⅱ[J]. 环境化学, 2018, 37(12):2630-2637.

    WANG Y, YANG S, ZHANG M X, et al. Degradation of Orange II by ZnFe/BC catalyzed persulfate[J]. Environmental Chmistry, 2018, 37(12):2630-2637(in Chinese).

    [24] JOVANOVIC M, RAKIC T, JANCIC S, et al. Assessment of beta-lactams retention in hydrophilic interaction chromatography applying box-behnken design[J].Journal of Separation Science, 2012, 35(12):1424-1431.
    [25] Ge L K, CHEN J W, WEI X X, et al. Aquatic photochemistry of fluoroquinolone antibiotics:kinetics, pathways, and multivariate effects of main waterconstituents[J]. Environmental Science and Technology, 2010, 44(7):2400-2405.
    [26] 朱松梅, 周振, 顾凌云.Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水[J]. 环境科学, 2016, 37(1):247-252.

    ZHU S M, ZHOU Z, GU L Y. Advanced treatment of effluent from industrial park wastewater treatment plant by ferrous ion activated sodium persulfate[J]. Environmental Science, 2016, 37(1):247-252(in Chinese).

    [27] 何洋洋, 唐素琴, 康婷婷, 等.响应面法优化硫酸根自由基高级氧化深度处理渗滤液生化尾水[J].中国环境科学, 2015, 35(6):1749-1755.

    HE Y Y,TANG S Q, KANG T T,et al. Optimization of sulfate radical-based advanced oxidation process using response surface methodology for treating effluent from biological treatment of landfill leachate[J].China Environmental Science,2015, 35(6):1749-1755(in Chinese).

    [28] SAEID K, MEHRORANG G. Optimization of dispersive liquid-liquid microextraction with central composite design for preconcentration of chlordiazepoxide drug and its determination by HPLC-UV[J]. Journal of Separation Science, 2013, 36(11), 1734-1742.
    [29] VITANOV V I, JAVAID N, STEPHENSON D J. Application of response surface methodology for the optimization of microfriction surfacing process[J]. Surface & Coatings Technology, 2010, 204(21/22):3501-3508.
    [30] MOUSAVI S A R, MAHVI A H, NASSERI S, et al. Effect of fenton process (H2O2/Fe2+) on removal of linear alkylbenzene sulfonate using central composite design and response surfacemethodology[J].Iranian Journal of Environmental Health Science & Engineering, 2011, 8(2):129-138.
    [31] YANG H,WEI H Q,HU L T,et al.Mechanism for the photocatalytic transformation of s-trizine herbicides by·OH radicals over TiO2[J]. Chemical Engineering Journal, 2016, 300:209-216.
  • 加载中
计量
  • 文章访问数:  906
  • HTML全文浏览数:  906
  • PDF下载数:  26
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-01-17
  • 刊出日期:  2019-12-10

酸性红37在UV/K2S2O8体系中的降解动力学和转化机制

    通讯作者: 阳海, E-mail: yanghai1001@163.com
  • 湖南工程学院, 环境催化与废弃物再生化湖南省重点实验室, 湘潭, 411104
基金项目:

湖南省自然科学基金(2018JJ2079),湖南省教育厅项目(17B061,18C0698)和国家自然科学基金(21772035)资助

摘要: 

为了探索单偶氮染料Acid red 37(AR37)降解的可行性及在活性氧物种作用下可能的反应位点和迁移转化机制,采用光活化过硫酸盐技术并根据单因素试验和响应曲面法优化试验考察了底物浓度,K2S2O8用量和温度3个因素对AR37降解率的影响,得出AR37光催化降解的最优条件为:底物浓度90 μmol·L-1,K2S2O8用量8.47 mmol·L-1和温度36℃.最后,利用GCMS对AR37在UV/K2S2O8体系下降解中间产物进行初步的分离与分析,并结合AR37前线电子云密度(FEDs)的理论计算结果对其降解途径进行推导.研究发现AR37在·SO4-等活性氧物种作用下,C2、N8、N16、C17和C18等活性位点容易被自由基直接攻击或者发生电子转移反应,从而引起AR37分子中N=N和C-N键断裂后的进一步羟基化反应,是其主要的降解途径.

English Abstract

参考文献 (31)

目录

/

返回文章
返回