桑树(Morus alba L.)原位修复某尾矿区重金属污染土壤

曾鹏, 郭朝晖, 韩自玉, 肖细元, 彭驰. 桑树(Morus alba L.)原位修复某尾矿区重金属污染土壤[J]. 环境化学, 2020, (5): 1395-1403. doi: 10.7524/j.issn.0254-6108.2019062501
引用本文: 曾鹏, 郭朝晖, 韩自玉, 肖细元, 彭驰. 桑树(Morus alba L.)原位修复某尾矿区重金属污染土壤[J]. 环境化学, 2020, (5): 1395-1403. doi: 10.7524/j.issn.0254-6108.2019062501
ZENG Peng, GUO Zhaohui, HAN Ziyu, XIAO Xiyuan, PENG Chi. In-situ phytoremediation of heavy metal-contaminated soil by Morus alba L. near a mine tailing[J]. Environmental Chemistry, 2020, (5): 1395-1403. doi: 10.7524/j.issn.0254-6108.2019062501
Citation: ZENG Peng, GUO Zhaohui, HAN Ziyu, XIAO Xiyuan, PENG Chi. In-situ phytoremediation of heavy metal-contaminated soil by Morus alba L. near a mine tailing[J]. Environmental Chemistry, 2020, (5): 1395-1403. doi: 10.7524/j.issn.0254-6108.2019062501

桑树(Morus alba L.)原位修复某尾矿区重金属污染土壤

    通讯作者: 郭朝晖, E-mail: zhguo@csu.edu.cn
  • 基金项目:

    国家自然科学基金(41271330)和国家重点研发计划重点专项(2018YFC1800400)资助.

In-situ phytoremediation of heavy metal-contaminated soil by Morus alba L. near a mine tailing

    Corresponding author: GUO Zhaohui, zhguo@csu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (41271330) and National Key R&D Program of China (2018YFC1800400).
  • 摘要: 木本植物具有根系发达、生物量大、适应性强等特点,可广泛用于重金属污染土壤修复.本文通过5年的田间修复试验,研究了桑树(Morus alba L.)对污染土壤中重金属的累积和分布特征、土壤中重金属和营养元素有效性含量的变化,来探讨桑树修复某尾矿区污染土壤中Mn、Zn和Cd等重金属的效果.研究结果表明,桑树生物量大,可用于重金属污染土壤的生态修复与景观恢复.田间种植5年后,桑树整株干重每株可达4 kg.桑树对土壤中重金属具有一定的转运和累积能力,地上部分中Cd、Zn和Mn等重金属含量明显大于根部,尤其是叶片中重金属含量明显大于枝和主干中的含量.修复5年后,桑树地上部分Zn和Mn的累积总量可达3277.7 mg·100 m-2和2422.4 mg·100 m-2,且土壤中Mn和Zn含量分别从2192.5 mg·kg-1和103.2 mg·kg-1降低至1790.0 mg·kg-1和85.94 mg·kg-1,同时土壤有效态Mn和Zn分别显著(P<0.05)降低66.0%和28.6%.然而,桑树落叶中Cd、Zn和Mn含量分别可达0.36、64.5、189.2 mg·kg-1.因此,通过定期清除桑树落叶或刈割地上部分,可防止叶片中重金属对土壤造成二次污染,同时削减土壤中重金属含量.同时,经桑树修复5年后土壤中碱解氮、有效磷和速效钾含量均显著(P<0.05)降低,需定期补充相应氮、磷和钾肥来强化桑树修复尾矿区重金属污染土壤.
  • 加载中
  • [1] HUANG B, GUO Z, TU W, et al. Geochemistry and ecological risk of metal(loid)s in overbank sediments near an abandoned lead/zinc mine in Central South China[J]. Environmental Earth Sciences,2018,77:68.
    [2] 陆金, 赵兴青, 黄健, 等. 铜陵狮子山矿区尾矿库及周边17种乡土植物重金属含量及富集特征[J]. 环境化学,2019,38(1):78-86.

    LU J, ZHAO X Q, HUANG J, et al. Heavy metal contents and enrichment characteristics of 17 species indigenous plants in the tailing surrounding in Shizishan, Tongling[J]. Environmental Chemistry,2019,38(1):78-86(in Chinese).

    [3] 张永慧, 麻冰涓, 张东, 等. 南太行山山前平原工业园区土壤重金属污染特征及来源[J]. 环境化学,2017,36(8):1821-1830.

    ZHANG Y H, MA B J, ZHANG D, et al. Contamination and sources of heavy metals in the soils of industrial cluster in piedmont plain of South Taihang Mountain[J]. Environmental Chemistry,2017,36(8):1821-1830(in Chinese).

    [4] XUE S, SHI L, WU C, et al. Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines[J]. Environmental Research,2017,156:23-30.
    [5] 曾鹏, 曹霞, 郭朝晖, 等. 珊瑚树(Viburnum odoratissinum)对污染土壤中镉的耐受和富集特征[J]. 生态学报,2017,37(19):6472-6479.

    ZENG P, CAO X, GUO Z H, et al. Tolerance and accumulation characteristics of Viburnum odoratissinum to cadmium in contaminated soil[J]. Acta Ecologica Sinica,2017,37(19):6472-6479(in Chinese).

    [6] WANG L, JI B, HU Y, et al. A review on in situ phytoremediation of mine tailings[J]. Chemosphere,2017,184:594-600.
    [7] ZENG P, GUO Z, XIAO X, et al. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil[J]. Science of the Total Environment,2019,650:594-603.
    [8] 雒焕章, 南忠仁, 胡亚虎, 等. 不同螯合剂处理下杨树对土壤中Cd的吸收和富集效应[J]. 中国环境科学,2013,33(3):461-465.

    LUO H Z, NAN Z R, HU Y H, et al. Chelate-induced uptake and accumulation of Cd in soil by poplar (Populus bolleana Lauche)[J]. China Environmental Science,2013,33(3):461-465(in Chinese).

    [9] 曾鹏, 曹霞, 郭朝晖, 等. Cd污染土壤景观修复植物筛选研究[J]. 农业环境科学学报,2016,35(4):691-698.

    ZENG P, CAO X, GUO Z H, et al. Potential of ornamental plants for remediating soil polluted with cadmium[J]. Journal of Agro-Environment Science,2016,35(4):691-698(in Chinese).

    [10] ZENG P, GUO Z, CAO X, et al. Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium[J]. International Journal of Phytoremediation,2018,20(4):311-320.
    [11] ZENG P, GUO Z, XIAO X, et al. Response to cadmium and phytostabilization potential of Platycladus orientalis in contaminated soil[J]. International Journal of Phytoremediation,2018,20(13):1337-1345.
    [12] 曾鹏, 郭朝晖, 肖细元, 等. 构树修复对重金属污染土壤环境质量的影响[J]. 中国环境科学,2018,38(7):2639-2645.

    ZENG P, GUO Z H, XIAO X Y, et al. Effect of phytoremediation with Broussonetia papyrifera on the biological quality in soil contaminated with heavy metals[J]. China Environmental Science,2018,38(7):2639-2645(in Chinese).

    [13] 刘佩琪, 陈奇伯, 邓志华, 等. 城市森林对大气中重金属的富集特征[J]. 环境化学,2017,36(2):265-273.

    LIU P Q, CHEN Q B, DENG Z H, et al. Enrichment of atmospheric heavy metals by urban forest[J]. Environmental Chemistry,2017,36(2):265-273(in Chinese).

    [14] LUO Z, HE J, POLLE A, et al. Heavy metal accumulation and signal transduction in herbaceous and woody plants:Paving the way for enhancing phytoremediation efficiency[J]. Biotechnology Advances,2016,34(6):1131-1148.
    [15] 曾鹏, 郭朝晖, 肖细元, 等. 芦竹和木本植物间种修复重金属污染土壤[J]. 环境科学,2018,39(11):367-376.

    ZENG P, GUO Z H, XIAO X Y, et al. Intercropping Arundo donax with woody plants to remediate heavy metal-contaminated soil[J]. Environmental Science,2018,39(11):367-376(in Chinese).

    [16] ZHOU L, ZHAO Y, WANG S. Cadmium transfer and detoxification mechanisms in a soil-mulberry-silkworm system:Phytoremediation potential[J]. Environmental Science and Pollution Research,2015,22:18031-18039.
    [17] 李庚飞, 程书强. 金矿周围树木对土壤重金属的吸收[J]. 东北林业大学学报,2013,41(1):55-58.

    LI G F, CHENG S Q. Study on absorption of heavy metals by several trees around the gold area[J]. Journal of Northeast Forestry University,2013,41(1):55-58(in Chinese).

    [18] 潘雨齐, 黄仁志, 雷鸣, 等. 镉在桑树体内的迁移与分布特征研究[J]. 农业环境科学学报,2016,35(8):1480-1487.

    PAN Y Q, HUANG R Z, LEI M, et al. Transportation and distribution of Cd in different varieties of mulberry (Moms alba L.)[J]. Journal of Agro-Environment Science,2016,35(8):1480-1487(in Chinese).

    [19] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,1999:12-196. LU R K. Soil and agricultural chemistry analysis[M]. Beijing:China Agriculture S&T Press,1999:12

    -196(in Chinese).

    [20] ZENG P, GUO Z, XIAO X, et al. Dynamic response of enzymatic activity and microbial community structure in metal(loid)-contaminated soil with tree-herb intercropping[J]. Geoderma,2019,345:5-16.
    [21] WOOLSON E A, AXLEY J H, KEARNEY P C. Correlation between available soil arsenic, estimated by six methods, and response of corn (Zea mays L.)[J]. Soil Science Society of America Journal,1971,35(1):101-105.
    [22] PULFORD I D, WATSON C. Phytoremediation of heavy metal-contaminated land by trees-A review[J]. Environment International, 2003,29(4):529-540.
    [23] 欧阳林男, 吴晓芙, 李芸, 等. 锰矿修复区泡桐与栾树生长与重金属积累特性[J]. 中国环境科学,2016,36(3):908-916.

    OUYANG L N, WU X F, LI Y, et al. Growth and heavy metal accumulation of Paulownia fortunei and Koelreuteria bipinnata in an ecological restoration site of the manganese-ore tailing[J]. China Environmental Science,2016,36(3):908-916(in Chinese).

    [24] MERTENS J, VERVAEKE P, MEERS E, et al. Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment[J]. Environmental Science & Technology,2006,40(6):1962-1968.
    [25] 卢一富, 李云峰, 苗向前, 等. 微小铅锌矿区土壤和植物重金属污染特征及风险评价[J]. 生态与农村环境学报,2015,31(4):566-571.

    LU Y F, LI Y F, MIAO X Q, et al. Heavy metal pollution of soil and plants in areas of micro-sized lead-zinc mine and risk assessment[J]. Journal of Ecology and Rural Environment,2015,31(4):566-571(in Chinese).

    [26] 施翔, 陈益泰, 吴天林, 等. 7个柳树无性系在Cu/Zn污染土壤中的生长及对Cu/Zn的吸收[J]. 中国环境科学,2010,30(12):1683-1689.

    SHI X, CHEN Y T, WU T L, et al. Plant growth and metal uptake by Seven Salix clones on Cu/Zn contaminated environment[J]. China Environmental Science,2010,30(12):1683-1689(in Chinese).

    [27] 张兴, 王冶, 揭雨成, 等. 桑树对矿区土壤中重金属的原位去除效应研究[J]. 中国农学通报,2012,28(7):59-63.

    ZHANG X, WANG Y, JIE Y C, et al. Effect of heavy metal home position elimination on the mulberry in mining area soil[J]. Chinese Agricultural Science Bulletin,2012,28(7):59-63(in Chinese).

    [28] 陈朝明, 龚惠群, 王凯荣, 等. 桑-蚕系统中镉的吸收、累积与迁移[J]. 生态学报,1999,19(5):664-669.

    CHEN C M, GONG H Q, WANG K R, et al. The absorption, accumulation and migration of cadmium in the system of soil mulberry and silkworm[J]. Acta Ecologica Sinica,1999,19(5):664-669(in Chinese).

    [29] WAN X, LEI M, CHEN T, et al. Safe utilization of heavy-metal-contaminated farmland by mulberry tree cultivation and silk production[J]. Science of the Total Environment,2017,599-600:1867-1873.
    [30] 施翔, 陈益泰, 王树凤, 等. 3种木本植物在铅锌和铜矿砂中的生长及对重金属的吸收[J]. 生态学报,2011,31(7):1818-1826.

    SHI X, CHEN Y T, WANG S F, et al. Growth and metal uptake of three woody species in lead/zinc and copper mine tailing[J]. Acta Ecologica Sinica,2011,31(7):1818-1826(in Chinese).

    [31] KANG W, BAO J, ZHENG J, et al. Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China[J]. International Journal of Phytoremediation,2018,20(1):1-7.
    [32] 刘孝利, 曾昭霞, 铁柏清, 等. 几种修复措施对Cd淋失及土壤剖面运移影响[J]. 环境科学,2016,37(2):734-739.

    LIU X L, ZENG Z X, TIE B Q, et al. Cd runoff load and soil profile movement after implementation of some typical contaminated agricultural soil remediation strategies[J]. Environmental Science,2016,37(2):734-739(in Chinese).

    [33] 郭朝晖, 廖柏寒, 黄昌勇. 酸雨中SO42-、NO3-、Ca2+、NH4+对红壤中重金属的影响[J]. 中国环境科学,2002,22(1):6-10.

    GUO Z H, LIAO B H, HUANG C Y. Effects of SO42-, NO3-, Ca2+ and NH4+ of acid rain on the heavy metals in red soils[J]. China Environmental Science,2002,22(1):6-10(in Chinese).

    [34] 张晓斌, 占新华, 周立祥, 等. 小麦/苜蓿套作条件下菲污染土壤理化性质的动态变化[J]. 环境科学,2011,32(5):1462-1470.

    ZHANG X B, ZHAN X H, ZHOU L X, et al. Dynamic changes of physicochemical properties in phenanthrene-contaminated soil under wheat and clover intercropping[J]. Environmental Science,2011,32(5):1462-1470(in Chinese).

    [35] ANTONIADIS V, LEVIZOU E, SHAHEEN S M, et al. Trace elements in the soil-plant interface:Phytoavailability, translocation, and phytoremediation-A review[J]. Earth-Science Reviews,2017,171:621-645.
    [36] 李影, 王友保. 蜈蚣草生长对其根际铜尾矿土壤酶活性的影响[J]. 生态与农村环境学报,2011,27(2):75-80.

    LI Y, WANG Y B. Effects of growth of Pteris vittata on enzyme activities in rhizosphere soil of copper mining tailing[J]. Journal of Ecology and Rural Environment,2011,27(2):75-80(in Chinese).

    [37] 苗旭锋, 肖细元, 郭朝晖, 等. 矿冶区重金属污染土壤肥力特征及生态修复潜力分析[J]. 环境科学与技术,2010,33(7):115-119.

    MIAO X F, XIAO X Y, GUO Z H, et al. Fertility characteristics and ecological restoration potential analysis for metal contaminated soils from vicinity of typical mining and smelting areas in Hunan province[J]. Environmental Science & Technology,2010,33(7):115-119(in Chinese).

  • 加载中
计量
  • 文章访问数:  2082
  • HTML全文浏览数:  2082
  • PDF下载数:  63
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-06-25

桑树(Morus alba L.)原位修复某尾矿区重金属污染土壤

    通讯作者: 郭朝晖, E-mail: zhguo@csu.edu.cn
  • 中南大学冶金与环境学院环境工程研究所, 长沙, 410083
基金项目:

国家自然科学基金(41271330)和国家重点研发计划重点专项(2018YFC1800400)资助.

摘要: 木本植物具有根系发达、生物量大、适应性强等特点,可广泛用于重金属污染土壤修复.本文通过5年的田间修复试验,研究了桑树(Morus alba L.)对污染土壤中重金属的累积和分布特征、土壤中重金属和营养元素有效性含量的变化,来探讨桑树修复某尾矿区污染土壤中Mn、Zn和Cd等重金属的效果.研究结果表明,桑树生物量大,可用于重金属污染土壤的生态修复与景观恢复.田间种植5年后,桑树整株干重每株可达4 kg.桑树对土壤中重金属具有一定的转运和累积能力,地上部分中Cd、Zn和Mn等重金属含量明显大于根部,尤其是叶片中重金属含量明显大于枝和主干中的含量.修复5年后,桑树地上部分Zn和Mn的累积总量可达3277.7 mg·100 m-2和2422.4 mg·100 m-2,且土壤中Mn和Zn含量分别从2192.5 mg·kg-1和103.2 mg·kg-1降低至1790.0 mg·kg-1和85.94 mg·kg-1,同时土壤有效态Mn和Zn分别显著(P<0.05)降低66.0%和28.6%.然而,桑树落叶中Cd、Zn和Mn含量分别可达0.36、64.5、189.2 mg·kg-1.因此,通过定期清除桑树落叶或刈割地上部分,可防止叶片中重金属对土壤造成二次污染,同时削减土壤中重金属含量.同时,经桑树修复5年后土壤中碱解氮、有效磷和速效钾含量均显著(P<0.05)降低,需定期补充相应氮、磷和钾肥来强化桑树修复尾矿区重金属污染土壤.

English Abstract

参考文献 (37)

目录

/

返回文章
返回