水动力条件下重金属在沉积物上的吸附及其形态分布与转化

黄建枝, 葛小鹏, 王东升. 水动力条件下重金属在沉积物上的吸附及其形态分布与转化[J]. 环境工程学报, 2013, 7(6): 2025-2032.
引用本文: 黄建枝, 葛小鹏, 王东升. 水动力条件下重金属在沉积物上的吸附及其形态分布与转化[J]. 环境工程学报, 2013, 7(6): 2025-2032.
Huang Jianzhi, Ge Xiaopeng, Wang Dongsheng. Adsorption and speciation distribution of heavy metals in sediments under hydrodynamic conditions[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2025-2032.
Citation: Huang Jianzhi, Ge Xiaopeng, Wang Dongsheng. Adsorption and speciation distribution of heavy metals in sediments under hydrodynamic conditions[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2025-2032.

水动力条件下重金属在沉积物上的吸附及其形态分布与转化

  • 基金项目:

    国家重点基础研究发展计划(2007CB407304)

    国家水体污染控制与治理科技重大专项(2009ZX07209-004-2)

  • 中图分类号: X131.2

Adsorption and speciation distribution of heavy metals in sediments under hydrodynamic conditions

  • Fund Project:
  • 摘要: 以北京近郊通州凉水河底泥沉积物为研究对象,利用环流槽(annular flume)模拟河流水力学条件,研究了重金属(Cr、Cu、Zn和Pb)在上覆水、悬浮颗粒物(SPMs)以及底泥中的交换、分配、形态分布与转化特征。结果表明,在动态水流环境条件下,加入到上覆水体中的重金属离子(5 mg/L)很快被吸附到SPMs上,模拟运行1 h后,上覆水中重金属的浓度(低流速条件下Zn除外),均不到初始值的3%;而SPMs中重金属的浓度在实验初期随着运行时间而降低,并且其浓度在低流速(0.2 m/s)时较高流速(0.35 m/s)条件下高,这是由于"颗粒物浓度效应"所致。在整个模拟运行周期(35 d)内,表层底泥中重金属形态发生了改变。其中,重金属的F4 (硫化物+有机物) 形态由于其与硫化物结合的形态被氧化而逐渐释放出来,并最终剩下不易氧化的有机物结合形态。与此同时,释放出的重金属通过再分配作用以易解析的F1~F3形态吸附于SPMs及底泥沉积物中,从而导致这3种形态浓度有所升高。
  • 加载中
  • [1] 曹心德,魏晓欣,代革联,等. 土壤重金属复合污染及其化学钝化修复技术研究进展. 环境工程学报,2011,5(7):1441-1453 Cao X. D., Wei X. X., Dai G. L., et al. Combined pollution of multiple heavy metals and their chemical immobilization in contaminated soils: A review. Chinese Journal of Environmental Engineering, 2011,5(7):1441-1453(in Chinese)
    [2] Pettersen J., Hertwich E. G. Critical review: Life-cycle inventory procedures for long-term release of metals. Environmental Science & Technology, 2008,42(13):4639-4647
    [3] Davutluoglu O. I., Seckin, G., Kalat D. G., et al. Speciation and implications of heavy metal content in surface sediments of Akyatan Lagoon-Turkey. Desalination, 2010,260(1-3):199-210
    [4] 方盛荣, 徐颖, 魏晓云, 等. 典型城市污染水体底泥中重金属形态分布和相关性. 生态环境学报, 2009,18(6):2066-2070 Fang D. L., Xu Y., Wei X. Y., et al. Morphological distribution and correlation of heavy metals in sediment of typical urban polluted water bodies. Ecology and Environmental Sciences, 2009,18(6):2066-2070(in Chinese)
    [5] Oh S., Kwak M. Y., Shin W. S. Competitive sorption of lead and cadmium onto sediments. Chemical Engineering Journal, 2009,152(2-3):376-388
    [6] Hutchins C. M., Teasdale P. R., Lee S. Y., et al. Cu and Zn concentration gradients created by dilution of pH neutral metal-spiked marine sediment: A comparison of sediment geochemistry with direct methods of metal addition. Environmental Science & Technology, 2008,42(8):2912-2918
    [7] Widdows J., Brinsle M. Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone. Jounal of Sea Research, 2002,48(2):143-156
    [8] 张志南,周宇,韩洁,等. 生物扰动试验系统(AFM)的基本结构和原理. 海洋科学,1999,(6):28-30 Zhang Z. N., Zhou Y., Han J., et al. The basic structures and operational principles of the annular flux systme (AFs). Marine Sciences, 1999,(6):28-30(in Chinese)
    [9] Amo C. L., Gran J., Dabor G., et al. Sea carousel: A benthic, annular flume. Estuarine, Coastal and Shelf Science, 1992,34(6):557-577
    [10] Manning A., Friend P., Prowse N., et al. Estuarine mud flocculation properties determined using an annular mini-flume and the LabSFLOC system. Continental Shelf Research, 2007,27(8):1080-1095
    [11] Fan T., Li X. D., Zhang G. Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary, South China. Ecotoxicology and Environmental Safety, 2005,61(3):420-431
    [12] Hossain M. A., Furumai H., Nakajim F. Competitive adsorption of heavy metals in soil underlying an infiltration facility installed in an urban area. Water Science and Technology, 2009,59(2):303-310
    [13] Sharm M. K., Jai C. K., Singha D. C., et al. Kinetics of sorption of lead on bed sediments of River Hindon, India. Environmental Monitoring and Assessment, 2009,157(1-4):11-21
    [14] McBride M. B. Environmental Chemistry of Soils. New York: Oxford University Press, 1994
    [15] Bibby R. L., Webster-Brow J. G. Characterisation of urban catchment suspended particulate matter (Auckland region, New Zealand); a comparison with non-urban SPM. Science of the Total Environment, 2005,343(1-3):177-197
    [16] Benoi G., Rozan T. F. The influence of size distribution on the particle concentration effect and trace metal partitioning in rivers. Geochimica Et Cosmochimica Acta, 1999,63(1):113-127
    [17] Sh B., Alle H. E., Grass M. T., et al. Modeling copper partitioning in surface waters. Water Research, 1998,32(12):3756-3764
    [18] Akca H., Ogu A., Karapire C. Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments. Water Research, 2003,37(4):813-822
    [19] Lin J., Chen S. Y., Su C. R. Assessment of sediment toxicity by metal speciation in different particle-size fractions of river sediment. Water Science & Technology, 2003,47(7-8):233-241
    [20] Calman W., Hon J., Frstner U. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Science & Technology, 1993,28(8-9):223-235
    [21] Saeki K., Okazaki M., Matsumoto S. The chemical phase changes in heavy metals with drying and oxidation of the lake sediments. Water Research, 1993,27(7):1243-1251
    [22] Fukue M., Yanai M., Sato Y., et al. Background values for evaluation of heavy metal contamination in sediments. Journal of Hazardous Materials, 2006,136(1):111-119
  • 加载中
计量
  • 文章访问数:  2571
  • HTML全文浏览数:  1368
  • PDF下载数:  1174
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-04-11
  • 刊出日期:  2013-06-11
黄建枝, 葛小鹏, 王东升. 水动力条件下重金属在沉积物上的吸附及其形态分布与转化[J]. 环境工程学报, 2013, 7(6): 2025-2032.
引用本文: 黄建枝, 葛小鹏, 王东升. 水动力条件下重金属在沉积物上的吸附及其形态分布与转化[J]. 环境工程学报, 2013, 7(6): 2025-2032.
Huang Jianzhi, Ge Xiaopeng, Wang Dongsheng. Adsorption and speciation distribution of heavy metals in sediments under hydrodynamic conditions[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2025-2032.
Citation: Huang Jianzhi, Ge Xiaopeng, Wang Dongsheng. Adsorption and speciation distribution of heavy metals in sediments under hydrodynamic conditions[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2025-2032.

水动力条件下重金属在沉积物上的吸附及其形态分布与转化

  • 1. 中国科学院生态环境研究中心环境水质学国家重点实验室, 北京 100085
基金项目:

国家重点基础研究发展计划(2007CB407304)

国家水体污染控制与治理科技重大专项(2009ZX07209-004-2)

摘要: 以北京近郊通州凉水河底泥沉积物为研究对象,利用环流槽(annular flume)模拟河流水力学条件,研究了重金属(Cr、Cu、Zn和Pb)在上覆水、悬浮颗粒物(SPMs)以及底泥中的交换、分配、形态分布与转化特征。结果表明,在动态水流环境条件下,加入到上覆水体中的重金属离子(5 mg/L)很快被吸附到SPMs上,模拟运行1 h后,上覆水中重金属的浓度(低流速条件下Zn除外),均不到初始值的3%;而SPMs中重金属的浓度在实验初期随着运行时间而降低,并且其浓度在低流速(0.2 m/s)时较高流速(0.35 m/s)条件下高,这是由于"颗粒物浓度效应"所致。在整个模拟运行周期(35 d)内,表层底泥中重金属形态发生了改变。其中,重金属的F4 (硫化物+有机物) 形态由于其与硫化物结合的形态被氧化而逐渐释放出来,并最终剩下不易氧化的有机物结合形态。与此同时,释放出的重金属通过再分配作用以易解析的F1~F3形态吸附于SPMs及底泥沉积物中,从而导致这3种形态浓度有所升高。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回