混合酶强化剩余污泥微生物燃料电池性能

张植平, 刘志华, 李小明, 杨麒, 罗琨, 杨慧, 王子龙. 混合酶强化剩余污泥微生物燃料电池性能[J]. 环境工程学报, 2013, 7(8): 3209-3215.
引用本文: 张植平, 刘志华, 李小明, 杨麒, 罗琨, 杨慧, 王子龙. 混合酶强化剩余污泥微生物燃料电池性能[J]. 环境工程学报, 2013, 7(8): 3209-3215.
Zhang Zhiping, Liu Zhihua, Li Xiaoming, Yang Qi, Luo Kun, Yang Hui, Wang Zilong. Enhanced performance of surplus sludge microbial fuel cells by additional mixed enzymes[J]. Chinese Journal of Environmental Engineering, 2013, 7(8): 3209-3215.
Citation: Zhang Zhiping, Liu Zhihua, Li Xiaoming, Yang Qi, Luo Kun, Yang Hui, Wang Zilong. Enhanced performance of surplus sludge microbial fuel cells by additional mixed enzymes[J]. Chinese Journal of Environmental Engineering, 2013, 7(8): 3209-3215.

混合酶强化剩余污泥微生物燃料电池性能

  • 基金项目:

    国家自然科学基金资助项目(51078128)

    国际科技合作项目(2011DFA90740)

    湖南省科技计划重点项目(2010WK2012)

  • 中图分类号: X703.5

Enhanced performance of surplus sludge microbial fuel cells by additional mixed enzymes

  • Fund Project:
  • 摘要: 为了提高剩余污泥为燃料的微生物燃料电池(SMFC)产电性能以及污泥减量化效果,在不同的温度(40、45和50℃)研究单室无膜微生物燃料电池中酶对SMFC产电特性的强化效果。加入单一酶(蛋白酶或α-淀粉酶)的结果表明,随着温度的上升,SMFC功率密度均上升,但 40℃时强化效果最明显,与加入失活酶的对照组相比分别增加198%和130%。在40℃下,混合酶比(蛋白酶浓度:淀粉酶浓度)为2:3时,SMFC最大功率密度为776 mW/m2。随着混合酶中淀粉酶的比例提高,SMFC库伦效率逐渐增加,当混合酶比为4:1时,CE(库伦效率)可达18.3%,同时TCOD、TSS和VSS去除率分别为70.3%、66.7%和80.4%。因此,温度相对较低时,外加酶强化效果更明显;与单种酶相比,混合酶对SMFC产电性能和污泥减量化的强化效果更显著。
  • 加载中
  • [1] 梁鹏, 黄霞, 钱易.污泥减量化技术的研究进展.环境污染治理技术与设备,2003,4(1):44-52 Liang Peng,Huang Xia,Qian Yi.Research progress sludge reduction technologies.Techniques and Equipment for Environmental Pollution Control, 2003,4(1):44-52(in Chinese)
    [2] Phuengprasop T., Sittiwong J., Unob F. Removal of heavy metal ions by iron oxide coated sewage sludge.Journal of Hazardous Materials, 2011,186(1):502-507
    [3] 余杰, 田宁宁, 王凯军.我国污泥处理、处置技术政策探讨.中国给水排水, 2005,21(8):84-87 Yu Jie,Tian Ningning,Wang Kaijun. Discussion on the technical policy of sludge treatment and disposal in China. China Water & Wastewater, 2005,21(8):84-87(in Chinese)
    [4] Rovira J., Mari M., Nadal M., et al. Use of sewage sludge as secondary fuel in a cement plant: human health risks.Environment International, 2011,37(1):105-111
    [5] 杭世琚, 刘旭东, 梁鹏.污泥处理处置的认识误区与控制对策.中国给水排水, 2004,20(12):89-92 Hang Shijun,Liu Xudong,Liang Peng. Misunderstanding of sludge disposal and treatment and control strategy. China Water & Wastewater, 2004,20(12):89-92(in Chinese)
    [6] Guodong Zhang, Qingliang Zhao, Yan Jiao, et al. Efficient electricity generation from sewage sludge using biocathode microbial fuel cell. Water Research, 2012,46(1):43-52
    [7] Jiang Junqiu, Zhao Qingliang, Zhang Jinna, et al. Electricity generation from bio-treatment of sewage sludge with microbial fuel cell. Bioresource Technology, 2009,100(23):5808-5812
    [8] Jong B. C., Kim B. H., Chang I. S., et al. Enrichment, performance and microbial diversity of a thermophilic mediatorless microbial fuel cell. Environ. Sci. Technol., 2006,40(20):6449-6454
    [9] 赵庆良, 姜琚秋, 王琨, 等.微生物燃料电池处理剩余污泥与同步产电性能.哈尔滨工程大学学报, 2010,31(6):780-785 Zhao Qinglian,Jiang Junqiu,Wang Kun, et al. Simultaneous treatment of sludge and generation of electricity with a microbial fuel cell. Journal of Harbin Engineering University, 2010,31(6):780-785(in Chinese)
    [10] 贾斌, 刘志华, 李小明, 等.剩余污泥为燃料的微生物燃料电池产电特性研究.环境科学, 2009,30(4):1227-1231 Jia Bin, Liu Zhihua, Li Xiaoming, et al.Electricity production from surplus sludge using microbial fuel cells. Environmental Science, 2009,30(4):1227-1231(in Chinese)
    [11] 杨慧, 刘志华, 李小明, 等.外加酶强化剩余污泥微生物燃料电池产电特性研究.环境科学, 2012,33(1):218-223 Yang Hui,Liu Zhihua,Li Xiaoming,et al. Electricity generation of surplus sludge microbial fuel cells enhanced by additional enzyme. Environmental Science, 2012,33(1):218-223(in Chinese)
    [12] Fan Y. Z., Hu H. Q., Liu H. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration.Journal of Power Sources, 2007,171(2):348-354
    [13] 郑峣, 刘志华, 李小明, 等.剩余污泥生物燃料电池输出功率密度的影响因素.中国环境科学, 2010,30(1):64-68 Zheng Yao,Liu Zhihua,Li Xiaoming, et al. Influencing factors for output power density of microbial fuel ceils using excess sludge from wastewater treatment plant as fuel. China Environmental Science, 2010,30(1):64-68(in Chinese)
    [14] Goel R., Mino T., Satoh H., et al. Enzyme activities under anaerobic and aerobic conditions in activated sludge sequencing batch reactor.Water Research, 1998,32(7):2081-2088
    [15] Yang Q., Luo K., Li X. M., et al. Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes.Bioresource Technology, 2010,101(9):2924-2930
    [16] Zhang P., Chen Y. G., Huang T. Y., et al. Waste activated sludge hydrolysis and short-chain fatty acids accumulation in the presence of SDBS in semi-continuous flow reactors: Effect of solids retention time and temperature. Chemical Engineering Journal, 2009,148(2-3):348-353
    [17] 黄霞, 范明志, 梁鹏, 等. 微生物燃料电池阳极特性对产电性能的影响.中国给水排水, 2007,23(3):8-13 Huang Xia,Fan Mingzhi,Liang Peng, et al. Influence of anodic characters of microbial fuel lell on generation performance. China Water & Wastewater, 2007,23(3):8-13(in Chinese)
    [18] 周群英, 高廷耀.环境工程微生物学(第2版).北京:高等教育出版社, 2000.122-133
    [19] Jiang S., Chen Y. G., Zhou Q., et al. Biological short-chain fatty acids (SCFAs) production from waste-activated sludge affected by surfactant.Water Research, 2007,41(14):3112-3120
    [20] 罗琨, 杨麒, 李小明, 等.外加酶强化剩余污泥水解的研究.环境科学,2010,31(3):763-767 Luo Kun,Yang Qi,Li Xiaoming, et al.Enhanced hydrolysis of excess sludge by external enzymes. Environmental Science, 2010,31(3):763-767(in Chinese)
    [21] Snaidr J., Amann R., Huber I., et al. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Applied and Environmental Microbiology, 1997,63(7):2884-3896
    [22] Blackall L. L., Burrell P. C., Gwilliam H. The use of 16S rDNA clone libraries to describe the microbial diversity of activated sludge communities. Water Science and Technology, 1998,37(4):451-454
    [23] Miller D. W., Agard D. A. Enzyme specificity under dynamic control: A normal mode analysis of α-lytic protease.Journal of Molecular Biology, 1999,286(1):267-278
    [24] MacGregor E. A., Janecek S., Svensson B. Relationship of sequence and structure to specificity in the K-amylase family of enzymes. Biochimica et Biophysica Acta, 2001,1546(1):1-20
    [25] Bruce E. L. 微生物燃料电池. 冯玉杰, 王鑫,译.北京:化学工业出版社, 2009.46-59
    [26] Liu H., Fang H. H. P. Extraction of extracellular polymeric substances (EPS) of sludges. Journal of Biotechnology, 2002,95(3):249-256
    [27] Pinnekamp J. Effects of thermal pretreatment of sewage sludge on anaerobic digestion.Water Science and Technology, 1989,21(4-5):97-108
    [28] Tao H. C., Li W., Liang M., et al. A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(II) with electricity generation. Bioresource Technology, 2011,102(7):4774-4778
    [29] 蔡春光, 刘军深, 蔡伟民.胞外多聚物在好氧颗粒化中的作用机理.中国环境科学,2004,24(5):623-626 Cai Chunguang,Liu Junshen,Cai Weimin. Action mechanism of extracelluar polymers on the aerobic granulation. China Environmental Science, 2004,24(5):623-626(in Chinese)
    [30] 郑峣.剩余污泥微生物燃料电池的产电性能及基质变化研究.长沙:湖南大学硕士学位论文, 2010 Zheng Yao. The electrical properties and changes on the substrates of microbial fuel cells using excess sludge as fuel.Changsha: Master's Degree Thesis of Hunan University, 2010(in Chinese)
  • 加载中
计量
  • 文章访问数:  1799
  • HTML全文浏览数:  872
  • PDF下载数:  1009
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-07-03
  • 刊出日期:  2013-08-12
张植平, 刘志华, 李小明, 杨麒, 罗琨, 杨慧, 王子龙. 混合酶强化剩余污泥微生物燃料电池性能[J]. 环境工程学报, 2013, 7(8): 3209-3215.
引用本文: 张植平, 刘志华, 李小明, 杨麒, 罗琨, 杨慧, 王子龙. 混合酶强化剩余污泥微生物燃料电池性能[J]. 环境工程学报, 2013, 7(8): 3209-3215.
Zhang Zhiping, Liu Zhihua, Li Xiaoming, Yang Qi, Luo Kun, Yang Hui, Wang Zilong. Enhanced performance of surplus sludge microbial fuel cells by additional mixed enzymes[J]. Chinese Journal of Environmental Engineering, 2013, 7(8): 3209-3215.
Citation: Zhang Zhiping, Liu Zhihua, Li Xiaoming, Yang Qi, Luo Kun, Yang Hui, Wang Zilong. Enhanced performance of surplus sludge microbial fuel cells by additional mixed enzymes[J]. Chinese Journal of Environmental Engineering, 2013, 7(8): 3209-3215.

混合酶强化剩余污泥微生物燃料电池性能

  • 1.  湖南大学环境科学与工程学院, 长沙 410082
  • 2.  环境生物与控制教育部重点实验室(湖南大学), 长沙 410082
  • 3.  湖南艾布鲁环保科技有限公司, 长沙 410007
  • 4.  广西大学环境学院, 南宁 530004
基金项目:

国家自然科学基金资助项目(51078128)

国际科技合作项目(2011DFA90740)

湖南省科技计划重点项目(2010WK2012)

摘要: 为了提高剩余污泥为燃料的微生物燃料电池(SMFC)产电性能以及污泥减量化效果,在不同的温度(40、45和50℃)研究单室无膜微生物燃料电池中酶对SMFC产电特性的强化效果。加入单一酶(蛋白酶或α-淀粉酶)的结果表明,随着温度的上升,SMFC功率密度均上升,但 40℃时强化效果最明显,与加入失活酶的对照组相比分别增加198%和130%。在40℃下,混合酶比(蛋白酶浓度:淀粉酶浓度)为2:3时,SMFC最大功率密度为776 mW/m2。随着混合酶中淀粉酶的比例提高,SMFC库伦效率逐渐增加,当混合酶比为4:1时,CE(库伦效率)可达18.3%,同时TCOD、TSS和VSS去除率分别为70.3%、66.7%和80.4%。因此,温度相对较低时,外加酶强化效果更明显;与单种酶相比,混合酶对SMFC产电性能和污泥减量化的强化效果更显著。

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回