低品位电镀污泥对氧化亚铁硫杆菌活性的影响

张再平, 应群姣, 马王钢. 低品位电镀污泥对氧化亚铁硫杆菌活性的影响[J]. 环境工程学报, 2013, 7(9): 3555-3560.
引用本文: 张再平, 应群姣, 马王钢. 低品位电镀污泥对氧化亚铁硫杆菌活性的影响[J]. 环境工程学报, 2013, 7(9): 3555-3560.
Zhang Zaiping, Ying Qunjiao, Ma Wanggang. Effect of low grade electroplating sludge on bioactivity of Thiobacillus ferroxidans[J]. Chinese Journal of Environmental Engineering, 2013, 7(9): 3555-3560.
Citation: Zhang Zaiping, Ying Qunjiao, Ma Wanggang. Effect of low grade electroplating sludge on bioactivity of Thiobacillus ferroxidans[J]. Chinese Journal of Environmental Engineering, 2013, 7(9): 3555-3560.

低品位电镀污泥对氧化亚铁硫杆菌活性的影响

  • 基金项目:
  • 中图分类号: X172;X705

Effect of low grade electroplating sludge on bioactivity of Thiobacillus ferroxidans

  • Fund Project:
  • 摘要: 以氧化亚铁硫杆菌(Thiobacillus ferroxidans,以下简称T.f菌)和低品位电镀污泥(干污泥中主要重金属组分低于3%的电镀污泥,以下简称污泥)为主要实验材料,研究了不同污泥浓度、初始pH对T.f菌Fe2+氧化速率的影响。将实验组中T.f菌重新接种于新鲜9 K液体培养基,以考察T.f菌经实验处理后对新鲜9 K液体培养基中Fe2+的氧化能力,结果表明,低品位电镀污泥对T.f菌Fe2+氧化速率具有显著抑制作用,2.5 g/L的污泥浓度即可使T.f菌Fe2+氧化速率由23.86 mg/(mL·h)降低至10.72 mg/(mL·h);调节溶液初始pH,可有限改善T.f菌在低污泥浓度条件下的Fe2+氧化速率,但在较高污泥浓度时,对其Fe2+氧化速率无促进作用。
  • 加载中
  • [1] 周吉奎, 钮因健, 覃文庆. 硫化矿对浸矿细菌(Fe2+)氧化活性的影响. 中国有色金属学报,2003, 13(5): 1278-1282 Zhou J. G.,Niu Y. J.,Qin W. Q. Effect of sulfide minerals on acidithiobacillus ferrooxidans oxidation activity of Fe2+. The Chinese Journal of Nonferrous Metals,2003, 13(5): 1278-1282 (in Chinese)
    [2] 任婉侠, 李培军, 范淑秀, 等. 低分子量有机酸对氧化亚铁硫杆菌影响. 环境工程学报,2008, 2(9): 1269-1273 Ren W. X.,Li P. J.,Fan S. X., et al. Effects of low molecular weight organic acids on Acidithiobacillus ferrooxidans. Chinese Journal of Environmental Engineering,2008, 2(9): 1269-1273 (in Chinese)
    [3] Tyagi R. D., Blais J. F., Meunier N., et al. Simultaneous sewage sludge digestion and metal leaching:Effect of sludge solids concentration. Water Research,1997, 31(1): 105-118
    [4] 周顺桂, 王世梅, 余素萍, 等. 污泥中氧化亚铁硫杆菌的分离及其应用效果. 环境科学,2003, 24(4): 56-60 Zhou S. G., Wang S. M., Yu S. P.,et al. Isolation of Thiobacillus ferrooxidans and its application on heavy metal bioleaching from sewage sludge. Environmental Science,2003, 24(4): 56-60 (in Chinese)
    [5] 周立祥, 周顺桂, 王世梅, 等. 制革污泥中铬的生物脱除及其对污泥的调理作用. 环境科学学报,2004, 24(6): 1014-1020 Zhou L. X.,Zhou S. G.,Wang S. M.,et al. Cr removal and improving the settling and dehydrating capability from tannery sludge simultaneously through bioleaching approach. Acta Scientiae Circumstantiae,2004, 24(6): 1014-1020 (in Chinese)
    [6] Watling H. R., Elliot A. D., Maley M., et al. Leaching of low-grade, copper-nickel sulfide ore. 1.Key parameters impacting on Cu recovery during column bioleaching. Hydrometallurgy,2009, 97(3-4): 204-212
    [7] Wang J. W., Bai J. F., Xu J. Q., et al. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. Journal of Hazardous Materials,2009, 172(2-3): 1100-1105
    [8] Kasper A. C., Berselli G. B. T., Freitas B. D. Printed wiring boards for mobile phones: Characterization and recycling of copper. Waste Management,2011, 31(12): 2536-2545
    [9] Zeng G. S., Deng X. R., Luo S. L., et al. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. Journal of Hazardous Materials,2012, 199-200: 164-169
    [10] Xin B. P., Zhang D., Zhang X., et al. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresource Technology,2009, 100(24): 6163-6169
    [11] Vakylabad A. B., Ranjbar M., Manafi Z., et al. Tank bioleaching of copper from combined flotation concentrate and smelter dust. International Biodeterioration & Biodegradation,2011, 65(8): 108-1214
    [12] Bakhtiari F., Atashi H., Zivdar M., et al. Bioleaching kinetics of copper from copper smelters dust. Journal of Industrial and Engineering Chemistry,2011, 17(1): 29-35
    [13] Shi Y., Zhang T. P., Li M. G., et al. Bio-leaching of heavy metals from electroplating sludge by Thiobacillus. Ecology and Environment,2008, 17(5): 1787-1791
    [14] Bayat B., Sari B. Bioleaching of dewatered metal plating sludge by Acidithiobacillus ferrooxidans using shake flask and completely mixed batch reactor. African Journal of Biotechnology,2010, 9(44): 7504-7512
    [15] HJ/T 345-2007 水质 铁的测定 邻菲啰啉分光光度法(试行)
    [16] 李洪枚,柯家骏. Cu2+对氧化亚铁硫杆菌(T.f)生长活性的影响. 黄金,2000, 21(6): 27-29 Li H. M., Ke J. J. Effect of Cu2+ on the growth and activity of Thiobacillus ferrooxidans. Gold,2000, 21(6): 27-29 (in Chinese)
    [17] 谢海云, 刘中华, 周峨. 高铁离子浓度下氧化亚铁硫杆菌的生长行为. 过程工程学报,2004, 4(1): 43-46 Xie H. Y., Liu Z. H., Zhou E. Growth of Thiobacillus ferrooxidan in high concentration ferrous ion culture medium. The Chinese Journal of Process Engineering,2004, 4(1): 43-46 (in Chinese)
  • 加载中
计量
  • 文章访问数:  2076
  • HTML全文浏览数:  1308
  • PDF下载数:  924
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-06-19
  • 刊出日期:  2013-09-15
张再平, 应群姣, 马王钢. 低品位电镀污泥对氧化亚铁硫杆菌活性的影响[J]. 环境工程学报, 2013, 7(9): 3555-3560.
引用本文: 张再平, 应群姣, 马王钢. 低品位电镀污泥对氧化亚铁硫杆菌活性的影响[J]. 环境工程学报, 2013, 7(9): 3555-3560.
Zhang Zaiping, Ying Qunjiao, Ma Wanggang. Effect of low grade electroplating sludge on bioactivity of Thiobacillus ferroxidans[J]. Chinese Journal of Environmental Engineering, 2013, 7(9): 3555-3560.
Citation: Zhang Zaiping, Ying Qunjiao, Ma Wanggang. Effect of low grade electroplating sludge on bioactivity of Thiobacillus ferroxidans[J]. Chinese Journal of Environmental Engineering, 2013, 7(9): 3555-3560.

低品位电镀污泥对氧化亚铁硫杆菌活性的影响

  • 1. 浙江省工业环保设计研究院有限公司, 杭州 310005
  • 2. 杭州佳达环保科技有限公司, 杭州 310012
基金项目:

摘要: 以氧化亚铁硫杆菌(Thiobacillus ferroxidans,以下简称T.f菌)和低品位电镀污泥(干污泥中主要重金属组分低于3%的电镀污泥,以下简称污泥)为主要实验材料,研究了不同污泥浓度、初始pH对T.f菌Fe2+氧化速率的影响。将实验组中T.f菌重新接种于新鲜9 K液体培养基,以考察T.f菌经实验处理后对新鲜9 K液体培养基中Fe2+的氧化能力,结果表明,低品位电镀污泥对T.f菌Fe2+氧化速率具有显著抑制作用,2.5 g/L的污泥浓度即可使T.f菌Fe2+氧化速率由23.86 mg/(mL·h)降低至10.72 mg/(mL·h);调节溶液初始pH,可有限改善T.f菌在低污泥浓度条件下的Fe2+氧化速率,但在较高污泥浓度时,对其Fe2+氧化速率无促进作用。

English Abstract

参考文献 (17)

返回顶部

目录

/

返回文章
返回