Ti(Ⅳ)催化臭氧/过氧化氢预处理酸性难降解废水

余夙, 刘汉水, 高燕, 童少平. Ti(Ⅳ)催化臭氧/过氧化氢预处理酸性难降解废水[J]. 环境工程学报, 2013, 7(10): 3881-3884.
引用本文: 余夙, 刘汉水, 高燕, 童少平. Ti(Ⅳ)催化臭氧/过氧化氢预处理酸性难降解废水[J]. 环境工程学报, 2013, 7(10): 3881-3884.
Yu Su, Liu Hanshui, Gao Yan, Tong Shaoping. Pretreatment of acid refractory wastewater by Ti(Ⅳ)-catalyzed ozonation[J]. Chinese Journal of Environmental Engineering, 2013, 7(10): 3881-3884.
Citation: Yu Su, Liu Hanshui, Gao Yan, Tong Shaoping. Pretreatment of acid refractory wastewater by Ti(Ⅳ)-catalyzed ozonation[J]. Chinese Journal of Environmental Engineering, 2013, 7(10): 3881-3884.

Ti(Ⅳ)催化臭氧/过氧化氢预处理酸性难降解废水

  • 基金项目:

    国家自然科学基金资助项目(21176225)

  • 中图分类号: X701.3

Pretreatment of acid refractory wastewater by Ti(Ⅳ)-catalyzed ozonation

  • Fund Project:
  • 摘要: 在Ti(Ⅳ)和过氧化氢存在条件下,考察了臭氧化酸性苯乙酮溶液、硝基苯溶液和垃圾渗滤液(浙江衢州某垃圾填埋场)的预处理效能。结果表明,在pH 2.86条件下,单独臭氧化处理对苯乙酮、硝基苯和垃圾渗滤液的COD去除率分别为10.1%、44%和28.6%。BOD5/COD值分别从原来的0.039、0.060和0.085提高到了0.130、0.158和0.174,仍属生化难降解废水。当体系加入Ti(Ⅳ)后,臭氧化苯乙酮和硝基苯的COD去除率分别达到了75.5%和65%,BOD5/COD则提高到了0.679和0.314,可生化性提升明显。对于垃圾渗滤液,只有当体系加入Ti(Ⅳ)和H2O2后,臭氧化COD的去除率达到66.6%,BOD5/COD提高至0.425。上述结果对酸性难降解废水的处理实际意义非常突出。
  • 加载中
  • [1] Arana I., Santorum P., Muela A., et al. Chlorination and ozonation of wastewater: Comparative analysis of efficacy through the effect on Escherichia coli membranes. Journal of Applied Microbiology, 1999,86(5):883-888
    [2] Deborde M., Rabouan S., Mazellier P., et al. Oxidation of bisphenol A by ozone in aqueous solution. Water Research, 2008,42(16):4299-4308
    [3] Volk C., Roche P., Joret J. C., et al. Comparison of the effect of ozone, ozone-hydrogen peroxide system and catalytic ozone on the biodegradable organic matter of a fulvic acid solution. Water Research, 1997,31(3):650-656
    [4] Ikehata K., EI-Din M. G. Degradation of recalcitrants in wastewater by ozonation and advances oxidation processes: A review. Ozone Science & Engineering, 2004, 26(4):327-343
    [5] Alvares A. B. C., Diaper C., Parsons S. A. Partial oxidation by ozone to remove recalcitrance from wastewaters: A review. Environmental Technology, 2001,22(4):409-427
    [6] Bai C. P., Xiong X. F., Gong W. Q., et al. Removal of rhodamine B by ozone-based advanced oxidation process. Desalination, 2011,278(1-3):84-90
    [7] Kurniawan T. A., Lo W. H., Chan G. Y. S. Radicals-catalyzed oxidation reactions for degradation of recalcitrant compounds from landfill leachate. Chemical Engineering Journal, 2006,125(1):35-57
    [8] 陈庆榆, 张雪梅. 分析化学. 合肥: 合肥工业大学出版社, 2010.233-233
    [9] 朱虹, 孙杰, 李剑超. 印染废水处理技术(第1版). 北京:中国纺织出版社, 2004.144-151
    [10] Tong S. P., Li W. W., Zhao S. Q., et al. Titanium(IV)-improved H2O2/O3 process for acetic acid degradation under acid conditions. Ozone Science & Engineering, 2011,33(6):441-448
    [11] Alexieva Z., Gerginova M., Zlateva P. Monitoring of aromatic pollutants biodegradation. Biochemical Engineering Journal, 2008,40(2): 233-240
    [12] Mu Y., Yu H. Q., Zheng J. C., et al. Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron. Chemosphere, 2004,54(7):789-794
    [13] Mantha R., Taylor K. E., Biswas N., et al. A continuous system for Fe reduction of nitrobenzene in synthetic wastewater. Environmental Science and Technology, 2001,35(15):3231-3236
    [14] 潘云霞, 郑怀礼, 李丹丹, 等. 超声/Fenton联用技术处理垃圾渗滤液中的有机物. 环境工程学报, 2008,2(4):445-449 Pan Y. X., Zhen H. L., Li D. D., et al. Degradation of organics in landfill leachate by ultrasound/Fenton process. Chinese Journal of Environmental Engineering, 2008,2(4):445-449(in Chinese)
    [15] Gogate P. R., Pandit A. B. A review of imperative technologies for wastewater treatment Ⅰ: Oxidation technologies at ambient conditions. Advances in Environmental Research, 2004,8(3-4):501-551
    [16] Safarzadeh-Amiri A. O3/H2O2 treatment of methyl-tert-butyl ether(MTBE) in contaminated waters. Water Research, 2001,35(15):3706-3714
    [17] 赵书琴. Ti(Ⅳ)催化臭氧化降解有机物的效能及动力学特性. 杭州: 浙江工业大学硕士学位论文, 2012 Zhao S. Q. The efficiency of Ti(Ⅳ)-catalyzed ozonation of organic compounds and its kinetics. Hangzhou: Master's Degree Thesis of Zhejiang University of Technology, 2012:45-54(in Chinese)
    [18] 国家环境保护局. 水和废水监测分析方法(第3版). 北京: 中国环境科学出版社, 1998.354-356
    [19] Sellers R. M. Spectrophotometric determination of hydrogen peroxide using potassium titanium(Ⅳ) oxalate. Analyst, 1980,105(10):950-954
    [20] 徐寿昌. 有机化学(第2版). 北京: 高等教育出版社, 1993.60-61
    [21] Staechlin J., Hoigné J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environmental Science and Technology, 1985,19(12):1206-1213
    [22] 童少平, 臧兴杰, 马淳安. 催化臭氧化降解技术中的两个问题, 环境工程学报, 2008,2(1):19-22 Tong S.P., Zang X. J., Ma C. A. Two problems in process of catalytic ozonation technology. Chinese Journal of Environmental Engineering, 2008,2(1):19-22(in Chinese)
  • 加载中
计量
  • 文章访问数:  1921
  • HTML全文浏览数:  1069
  • PDF下载数:  1210
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-09-24
  • 刊出日期:  2013-10-12
余夙, 刘汉水, 高燕, 童少平. Ti(Ⅳ)催化臭氧/过氧化氢预处理酸性难降解废水[J]. 环境工程学报, 2013, 7(10): 3881-3884.
引用本文: 余夙, 刘汉水, 高燕, 童少平. Ti(Ⅳ)催化臭氧/过氧化氢预处理酸性难降解废水[J]. 环境工程学报, 2013, 7(10): 3881-3884.
Yu Su, Liu Hanshui, Gao Yan, Tong Shaoping. Pretreatment of acid refractory wastewater by Ti(Ⅳ)-catalyzed ozonation[J]. Chinese Journal of Environmental Engineering, 2013, 7(10): 3881-3884.
Citation: Yu Su, Liu Hanshui, Gao Yan, Tong Shaoping. Pretreatment of acid refractory wastewater by Ti(Ⅳ)-catalyzed ozonation[J]. Chinese Journal of Environmental Engineering, 2013, 7(10): 3881-3884.

Ti(Ⅳ)催化臭氧/过氧化氢预处理酸性难降解废水

  • 1. 浙江工业大学化学工程与材料学院, 绿色化学合成技术国家重点实验室培育基地, 杭州 310032
基金项目:

国家自然科学基金资助项目(21176225)

摘要: 在Ti(Ⅳ)和过氧化氢存在条件下,考察了臭氧化酸性苯乙酮溶液、硝基苯溶液和垃圾渗滤液(浙江衢州某垃圾填埋场)的预处理效能。结果表明,在pH 2.86条件下,单独臭氧化处理对苯乙酮、硝基苯和垃圾渗滤液的COD去除率分别为10.1%、44%和28.6%。BOD5/COD值分别从原来的0.039、0.060和0.085提高到了0.130、0.158和0.174,仍属生化难降解废水。当体系加入Ti(Ⅳ)后,臭氧化苯乙酮和硝基苯的COD去除率分别达到了75.5%和65%,BOD5/COD则提高到了0.679和0.314,可生化性提升明显。对于垃圾渗滤液,只有当体系加入Ti(Ⅳ)和H2O2后,臭氧化COD的去除率达到66.6%,BOD5/COD提高至0.425。上述结果对酸性难降解废水的处理实际意义非常突出。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回