[1]
|
Farrington W. H. H., Tarbin J., Bygrave J., et al. Analysis of trace residues of tetracyclines in animal tissues and fluids using metal chelate affinity chromatography/HPLC. Food Addit. Contam., 1991,8(1):55-64
|
[2]
|
Liu H. J., Yang Y., Kang J., et al. Removal of tetracycline from water by Fe-Mn binary oxide. J. Environ. Sci., 2010,24(2):242-247
|
[3]
|
Jia D. A., Zhou D. M., Wang Y. J., et al. Adsorption and cosorption of Cu(Ⅱ) and tetracycline on two soils with different characteristics. Geoderma, 2008,146(1-2):224-230
|
[4]
|
Ji L. L., Wan Y. Q., Zheng S. R., et al. Adsorption of tetracycline and sulfamethoxazole on crop residue derived ashes: Implication for the relative importance of black carbon to soil sorption. Environ. Sci. Technol., 2011,45(13):5580-5586
|
[5]
|
Nuria P. N., ángel M., Rosa P. Review on immunoanalytical determination of tetracycline and sulfonamide residues in edible products. Analytical and Bioanalytical Chemistry, 2009,395(4):907-920
|
[6]
|
Sharif Z., Man Y. B. C., Hamid N. S. A., et al. Determination of organochlorine and pyrethroid pesticides in fruit and vegetables using solid phase extraction clean-up cartridges. Journal of Chromatography A, 2006,1127(1):254-261
|
[7]
|
García R. D., Carro D. A. M., Lorenzo F. R. A., et al. Determination of pesticides in seaweeds by pressurized liquid extraction and programmed temperature vaporization-based large volume injection gas chromatography tandem mass spectrometry. J. Chromatogr. A., 2010,1217(17):2940-2949
|
[8]
|
Sanusi A., Guillet V., Montury M. Advanced method using microwaves and solid-phase microextraction coupled with gas chromatography-mass spectrometry for the determination of pyrethroid residues in strawberries. Journal of Chromatography A, 2004,1046(1-2):35-40
|
[9]
|
Rissato S. R., Galhiane M. S., Knoll F. R. N., et al, Supercritical fluid extraction for pesticide multiresidue analysis in honey: determination by gas chromatography with electron-capture and mass spectrometry detection. Journal of Chromatography A, 2004,1048(2):153-159
|
[10]
|
Chen Z., Wang Y. H. Chromatographic methods for the determination of pyrethrin and pyrethroid pesticide residues in crops. foods and environmental samples. Journal of Chromatography A, 1996,754(1-2):367-395
|
[11]
|
Dogan K., Mustafa T., Eda A. L., et al. Adsorption equilibrium and kinetics of Reactive Black 5 and Reactive Red 239 in aqueous solution onto surfactant-modified zeolite. Journal of Chemical & Engineering Data, 2007,52(5):1615-1620
|
[12]
|
Purkait M. K., DasGupta S., De S. Adsorption of eosin dye on activated carbon and its surfactant based desorption. J. Environ. Manage., 2005,76(2):135-142
|
[13]
|
Parolo M. E., Savini M. C., Vallés J. M., et al. Tetracycline adsorption on montmorillonite:pH and ionic strength effects. Applied Clay Science, 2008,40(1-4):179-186
|
[14]
|
Wu T. X., Zhou M., Guo H. D., et al. Adsorption of tetracycline on loess soils. Acta Scientiae Circumstantiae, 2008,28(11):2311-2314
|
[15]
|
Chang P. H., Jean J. S., Jiang W. T., et al. Mechanism of tetracycline sorption on rectorite. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009,339(1-3):94-99
|
[16]
|
Luo P., Zhao Y. F., Zhang B., et al. Study on the adsorption of neutral red from aqueous solution onto halloysite nanotubes. Water Res., 2010,44(5):1489-1497
|
[17]
|
Molday R. S. Application of magneticmicrospheres in labeling and separation. Nature, 1977,268(5619):437-438
|
[18]
|
Xu L., Zhang H. T., Hong J. M., et al. Cobalt ferrite nanoparticles: Coprecipitation synthesis andmagnetic properties. Chinese Journal of Inorganic Chemistry, 2005,5(5):741-743
|
[19]
|
Antonio B. F., Teresa V. S., Marta S. Fabrication of monodisperse mesoporous carbon capsules decorated with ferrite nanoparticles. J. Phys. Chem. C., 2008,112(10):3648-3654
|
[20]
|
Wang X., Wang L. Y., He X. W., et al. A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition. Talanta, 2009,78(2):327-332
|
[21]
|
Sathishkumar M., Binupriya A. R., Kavitha D., et al. Adsorption potential of maize cob carbon for 2,4-dichlorophenol removal from aqueous solutions: Equilibrium,kinetics and thermodynamics modeling. Chem. Eng. J., 2009,147(2-3):265-271
|
[22]
|
Chang P. H., Jean J. S., Jiang W. T., et al. Mechanism of tetracycline sorption on rectorite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009,339(1)94-99
|
[23]
|
Mazzotti M. Equilibrium theory based design of simulated moving bed processes for a generalized Langmuir isotherm. J. Chromatogr. A, 2006,1126(1-2):311-322
|
[24]
|
Allen S. J., Mckay G., Porter J. F. J. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Colloid Interface Sci., 2004,280(2):322-333
|
[25]
|
Dwivedi C. P., Sahu J. N., Mohanty C. R., et al. Column performance of granular activated carbon packed bed for Pb(Ⅱ) removal. J. Hazard. Mater., 2008,156(1-3):596-603
|
[26]
|
Ho Y. S., McKay G. The sorption of lead(Ⅱ) ions on peat. Water Research, 1999,33(2):578-584
|
[27]
|
Ho Y. S., McKay G. Pseudo-second order model for sorption processes. Process Biochem., 1999,34(5):451-465
|
[28]
|
Weng C. H., Pan Y. F. Adsorption of a cationic dye (methylene blue) onto spent activated cay. J. Hazard. Mater., 2007,144(1):355-362
|
[29]
|
Gu X. H., Xu R., Yuan G. L., et al. Preparation of chlorogenic acid surface-imprinted magnetic nanoparticles and their usage in separation of traditional Chinese medicine. Anal Chim. Acta., 2010,675(1):64-70
|