As(Ⅴ)在金红石TiO2颗粒表面吸附特性及机理

李静, 张美一, 潘纲, 陈灏. As(Ⅴ)在金红石TiO2颗粒表面吸附特性及机理[J]. 环境工程学报, 2014, 8(4): 1323-1328.
引用本文: 李静, 张美一, 潘纲, 陈灏. As(Ⅴ)在金红石TiO2颗粒表面吸附特性及机理[J]. 环境工程学报, 2014, 8(4): 1323-1328.
Li Jing, Zhang Meiyi, Pan Gang, Chen Hao. Adsorption characteristics and mechanism of As(Ⅴ) on rutile TiO2 particles[J]. Chinese Journal of Environmental Engineering, 2014, 8(4): 1323-1328.
Citation: Li Jing, Zhang Meiyi, Pan Gang, Chen Hao. Adsorption characteristics and mechanism of As(Ⅴ) on rutile TiO2 particles[J]. Chinese Journal of Environmental Engineering, 2014, 8(4): 1323-1328.

As(Ⅴ)在金红石TiO2颗粒表面吸附特性及机理

  • 基金项目:

    国家自然科学基金资助项目(21007083,21277161)

  • 中图分类号: X703

Adsorption characteristics and mechanism of As(Ⅴ) on rutile TiO2 particles

  • Fund Project:
  • 摘要: 通过静态动力学和热力学吸附实验,研究了温度、共存离子以及溶质的初始浓度对As(Ⅴ)在金红石TiO2颗粒表面吸附的影响,探讨了As(Ⅴ)在金红石TiO2颗粒表面吸附特性及机理。结果表明,在As(Ⅴ)初始浓度为10 mg/L,pH为7的条件下,25℃时的吸附量0.41 mg/g高于30℃时的吸附量0.31 mg/g,As(Ⅴ)在金红石TiO2上的吸附为放热过程。CaCl2和MgCl2的添加对As(Ⅴ)在金红石TiO2表面吸附起到明显的促进作用。T=25℃,Ca2+或Mg2+浓度为10 mmol/L时,As(Ⅴ)吸附量分别为0.64和0.56 mg/g,Ca2+比Mg2+对As(Ⅴ)吸附促进作用强。As(Ⅴ)在金红石TiO2的吸附等温线符合Frendlich方程,Lagergren二级动力学方程能较好地描述As(Ⅴ)在金红石TiO2颗粒表面吸附的动力学过程。
  • 加载中
  • [1] Mandal B.K., Suzuki K.T.Arsenic round the world:A review.Talanta, 2002, 58(1):201-235
    [2] Berg M., Tran H.C., Nguyen T.C., et al.Arenic contamination of groundwater and drinking water in Vietnam:a human health threat.Environmental Science & Technology, 2001, 35(13):2621-2626
    [3] Mandal B.K., Chowdhury T.R., Samanta G., et al.Impact of safe water for drinking and cooking on five arsenic-affected families for 2 years in West Bengal, India.Science of The Total Environment, 1998, 218(2-3):185-201
    [4] Friedmann D., Mendive C., Bahnemann D.TiO2 for water treatment:Parameters affecting the kinetics and mechanisms of photocatalysis.Applied Catalysis B-Environmental, 2010, 99(3-4):398-406
    [5] Ludwig C., Schindler P.W.Surface complexation on TiO2:I.adsorption of H+ and Cu2+ ions onto TiO2 (Anatase).Journal of Colloid and Interface Science, 1995, 169(2):284-290
    [6] Pan G., Liss P.S.Metastable-equilibrium adsorption theory:Ⅱ.Experimental.Journal of Colloid and Interface Science, 1998, 201(1):77-85
    [7] He G.Z., Zhang M.Y., Pan G.Influence of pH on initial concentration effect of arsenate adsorption on TiO2 surfaces:Thermodynamic, DFT, and EXAFS interpretations.Journal of Physical Chemistry C.2009, 113(52):21679-21686
    [8] He G.Z., Pan G., Zhang M.Y.Studies on the reaction pathway of arsenate adsorption at water-TiO2 interfaces using density functional theory.Journal of Colloid and Interface Science, 2011, 364(2):476-481
    [9] Park N.G., van de Lagemaat J., Frank A.J.Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells.The Journal of Physical Chemistry B, 2000, 104(38):8989-8994
    [10] Liu B., Aydil E.S.Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells.Journal of the American Chemical Society, 2009, 131(11):3985-3990
    [11] Valencia-trejo E., Villicana-mendez M., Alfaro-cuevas-villanueva R., et al.Effect of temperature on the removal of arsenate from aqueous solutions by titanium dioxide nanoparticles.Journal of Applied Sciences in Environmental Sanitation, 2010, 5(2):171-184
    [12] Igwe J.C., Abia A.A.Studies on the Effects of Temperature and Particle Size on Bioremediation of.As(Ⅲ) from aqueous solution using modified and unmodified coconut fiber.Global Journal of Environmental Research, 2007, 1(1):22-26
    [13] Lv L., He J., Wei M., et al.Kinetic studies on fluoride removal by calcined layered double hydroxides.Industrial and Engineering Chemistry Research, 2006, 45(25):8623-8628
    [14] Sarkar M., Banerjee A., Pramanick P.P.Kinetics and mechanism of fluoride removal using laterite.Industrial and Engineering Chemistry Research, 2006, 45(17):5920-5927
    [15] Cheung C.W., Porter J.F., McKay G.Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char.Water Research, 2001, 35(3):605-612
    [16] 张美一, 何广智, 丁程程, 等.As(Ⅴ)在TiO2表面的吸附机理.物理化学学报, 2009, 25 (10):2034-2038 Zhang M.Y., He G.Z., Ding C.C, et al.Mechanism of arsenate (V) adsorption on TiO2 surfaces.Acta Physico-Chimica Sinica, 2009, 25 (10):2034-2038(in Chinese)
    [17] Urík M., Littera P., Ševc J., et al.Removal of arsenic (V) from aqueous solutions using chemically modified sawdust of spruce (Picea abies):Kinetics and isotherm studies.International Journal of Environmental Science and Technology, 2009, 6(3), 451-456
    [18] Goldberg S., Johnston C.T.Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling.Journal of Colloid and Interface Science, 2001, 234(1):204-216
    [19] Goldberg S.Inconsistency in the triple layer model description of ionic strength dependent boron adsorption.Journal of Colloid and Interface Science, 2005, 285(2):509-517
    [20] 吴志坚, 刘海宁, 张慧芳.离子强度对吸附影响机理的研究进展.环境化学, 2010, 29(6):997-1003 Wu Z.J., Liu H.N., Zhang H.F.Research progress on mechanisms about the effect of ionic strength on adsorption.Environmental Chemistry, 2010, 29(6):997-1003(in Chinese)
    [21] Chusuei C.C., Goodman D.W., Van Stipdonk M.J., et al.Solid-liquid adsorption of calcium phosphate on TiO2.Langmuir, 1999, 15(21):7355-7360
    [22] Ronson T.K., McQuillan A.J.Infrared spectroscopic study of calcium and phosphate ion coadsorption and of brushite crystallization on TiO2.Langmuir, 2002, 18(12):5019-5022
    [23] Jézéquel H., Chu K.H.Enhanced adsorption of arsenate on titanium dioxide using Ca and Mg ions.Environmental Chemistry Letters, 2005, 3(3):132-135
    [24] Tartar H.V., Wood L., Hiner E.A basic arsenate of calcium.Journal of the American Chemical Society, 1924, 46(4):809-813
    [25] Nishimura T., Tozawa K.On the solubility products of ferric, calcium and magnesium arsenates.Bulletin of the Research Institute of Mineral Dressing and Metallurgy Research Institute, Tohoku University, 1978, 34(1):19-26
  • 加载中
计量
  • 文章访问数:  1780
  • HTML全文浏览数:  1108
  • PDF下载数:  811
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-04-17
  • 刊出日期:  2014-03-28
李静, 张美一, 潘纲, 陈灏. As(Ⅴ)在金红石TiO2颗粒表面吸附特性及机理[J]. 环境工程学报, 2014, 8(4): 1323-1328.
引用本文: 李静, 张美一, 潘纲, 陈灏. As(Ⅴ)在金红石TiO2颗粒表面吸附特性及机理[J]. 环境工程学报, 2014, 8(4): 1323-1328.
Li Jing, Zhang Meiyi, Pan Gang, Chen Hao. Adsorption characteristics and mechanism of As(Ⅴ) on rutile TiO2 particles[J]. Chinese Journal of Environmental Engineering, 2014, 8(4): 1323-1328.
Citation: Li Jing, Zhang Meiyi, Pan Gang, Chen Hao. Adsorption characteristics and mechanism of As(Ⅴ) on rutile TiO2 particles[J]. Chinese Journal of Environmental Engineering, 2014, 8(4): 1323-1328.

As(Ⅴ)在金红石TiO2颗粒表面吸附特性及机理

  • 1. 中国科学院生态环境研究中心, 北京 100085
基金项目:

国家自然科学基金资助项目(21007083,21277161)

摘要: 通过静态动力学和热力学吸附实验,研究了温度、共存离子以及溶质的初始浓度对As(Ⅴ)在金红石TiO2颗粒表面吸附的影响,探讨了As(Ⅴ)在金红石TiO2颗粒表面吸附特性及机理。结果表明,在As(Ⅴ)初始浓度为10 mg/L,pH为7的条件下,25℃时的吸附量0.41 mg/g高于30℃时的吸附量0.31 mg/g,As(Ⅴ)在金红石TiO2上的吸附为放热过程。CaCl2和MgCl2的添加对As(Ⅴ)在金红石TiO2表面吸附起到明显的促进作用。T=25℃,Ca2+或Mg2+浓度为10 mmol/L时,As(Ⅴ)吸附量分别为0.64和0.56 mg/g,Ca2+比Mg2+对As(Ⅴ)吸附促进作用强。As(Ⅴ)在金红石TiO2的吸附等温线符合Frendlich方程,Lagergren二级动力学方程能较好地描述As(Ⅴ)在金红石TiO2颗粒表面吸附的动力学过程。

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回