[1]
|
吴忠标. 环境催化原理及应用. 北京: 化学工业出版社, 2006
|
[2]
|
Riga A., Soutsas K., Ntampegliotis K., et al. Effect of system parameters and of inorganic salts on the decolorization and degradation of Procion Hexl dyes. Comparison of H2O2/UV, Fenton, UV/Fenton, TiO2/UV and TiO2/UV/H2O2 processes. Desalination, 2007, 211 (1-3): 72-86
|
[3]
|
Selvam K., Muruganandham M., Sobana N., et al. Enhancement of UV-assisted photo-Fenton degradation of reactive orange 4 using TiO2-P25 nanoparticles. Sep. Purif. Technol., 2007, 54 (2): 241-247
|
[4]
|
Cong Y. Q., Li Z., Zhang Y., et al. Synthesis of α-Fe2O3/TiO2 nanotube arrays for photoelectro-Fenton degradation of phenol. Chem. Eng. J., 2012, 191: 356-363
|
[5]
|
Anipsitakis G. P., Dionysiou D. D., Gonzalez M. A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions. Environ. Sci. & Technol., 2006, 40 (3): 1000-1007
|
[6]
|
Chan K. H., Chu W. Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process. Water Res., 2009, 43 (9): 2513-2521
|
[7]
|
宋林云, 吴玉程, 李云, 等. 介孔Co-TiO2 的制备及其光催化性能研究. 功能材料, 2008, 39 (1): 32-35 Song Y. L., Wu Y. C., Li Y., et al. Preparation and photocatalystic activity of the mesoporous Co2+ doping nanometer TiO2. Journal of Functional Materials, 2008, 39 (1): 32-35 (in Chinese)
|
[8]
|
Le T. T., Akhtar M. S., Park D. M., et al. Water splitting on Rhodamine-B dye sensitized Co-doped TiO2 catalyst under visible light. Appl. Catal. B., 2012, 111-112: 397-401
|
[9]
|
Mi W. B., Jiang E. Y., Bai H. L. Structure, magnetic and optical properties of polycrystalline Co-doped TiO2 films. J. Magn. Magn. Mater., 2009, 321 (16): 2472-2476
|
[10]
|
Jayakumar O. D., Sudakar C., Persson C., et al. 1D Morphology stabilization and enhanced magnetic properties of Co:ZnO nanostructures on Co doping with Li: A template-free synthesis. Cryst. Growth Des., 2009, 9 (10): 4450-4455
|
[11]
|
Kim Y. D., Cooper S. L., Klein M. V., et al. Spectroscopic ellipsometry study of the diluted magnetic semiconductor system Zn (Mn, Fe, Co) Se. Phys. Rev. B., 1994, 49 (3): 1732-1742
|
[12]
|
Zayat M., Levy D. Blue CoAl2O4 particles prepared by the sol-gel and citrate-gel methods. Chem. Mater., 2000, 12 (9): 2763-2769
|
[13]
|
刘春艳. 纳米光催化及光催化环境净化材料. 北京: 化学工业出版社, 2008
|
[14]
|
Ganesh I., Gupta A. K., Kumar P. P., et al. Preparation and characterization of Co-doped TiO2 materials for solar light induced current and photocatalytic applications. Mater. Chem. Phys., 2012, 135 (1): 220-234
|
[15]
|
Shi P. H., Su R. J., Wan F. Z., et al. Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of Orange Ⅱ in water by advanced oxidation technology based on sulfate radicals. Appl. Catal. B., 2012, 123-124: 265-272
|
[16]
|
Huang W., Zuo Z. J., Han P. D., et al. XPS and XRD investigation of Co/Pd/TiO2 catalysts by different preparation methods. J. Electron. Spectrosc. Relat. Phenom., 2009, 173 (2-3): 88-95
|
[17]
|
Yang Q. J., Choi H., Dionysiou D. D. Nanocrystalline cobalt oxide immobilized on titanium dioxide nanoparticles for the heterogeneous activation of peroxymonosulfate. Appl. Catal. B., 2007, 74 (1-2): 170-178
|
[18]
|
Liang C. J., Wang Z. S., Bruell C. J. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere, 2007, 66 (1): 106-113
|
[19]
|
Rastogi A. Sulfate radical-based environmental friendly chemical oxidation processes for destruction of 2-Chlorobiphenyl (PCB) and Chlorophenols (CPs). Cincinnati, Ohio, United States: University of Cincinnati, 2008
|