溴化十六烷基吡啶改性沸石对水中甲基橙的吸附

方巧, 林建伟, 詹艳慧, 杨孟娟, 郑雯婧. 溴化十六烷基吡啶改性沸石对水中甲基橙的吸附[J]. 环境工程学报, 2014, 8(6): 2211-2217.
引用本文: 方巧, 林建伟, 詹艳慧, 杨孟娟, 郑雯婧. 溴化十六烷基吡啶改性沸石对水中甲基橙的吸附[J]. 环境工程学报, 2014, 8(6): 2211-2217.
Fang Qiao, Lin Jianwei, Zhan Yanhui, Yang Mengjuan, Zheng Wenjing. Adsorption of methyl orange from aqueous solution on cetylpyridinium bromide (CPB)-modified zeolite[J]. Chinese Journal of Environmental Engineering, 2014, 8(6): 2211-2217.
Citation: Fang Qiao, Lin Jianwei, Zhan Yanhui, Yang Mengjuan, Zheng Wenjing. Adsorption of methyl orange from aqueous solution on cetylpyridinium bromide (CPB)-modified zeolite[J]. Chinese Journal of Environmental Engineering, 2014, 8(6): 2211-2217.

溴化十六烷基吡啶改性沸石对水中甲基橙的吸附

  • 基金项目:

    国家自然科学基金资助项目(50908142)

    上海市科学技术委员会科研项目(10230502900)

    上海高校青年教师培养资助计划项目(ZZhy12012)

  • 中图分类号: X703

Adsorption of methyl orange from aqueous solution on cetylpyridinium bromide (CPB)-modified zeolite

  • Fund Project:
  • 摘要: 采用溴化十六烷基吡啶(CPB)对天然沸石进行改性制备得到了CPB改性沸石,通过批量吸附实验考察了CPB改性沸石对水中阴离子染料甲基橙的去除作用。结果表明,天然沸石对水中甲基橙的吸附能力很差,而CPB改性沸石则可以有效吸附去除水中的甲基橙。CPB改性沸石对水中甲基橙的吸附能力随CPB负载量的增加而增加,CPB负载量最大的改性沸石对水中甲基橙的吸附能力最强。双分子层CPB改性沸石对水中甲基橙的去除率随吸附剂投加量的增加而增加,而CPB改性沸石对水中甲基橙的单位吸附量则随吸附剂投加量的增加而降低。双分子层CPB改性沸石对水中甲基橙的吸附平衡数据可以采用Langmuir等温吸附模型加以描述。根据Langmuir模型计算得到的CPB负载量为341 mmol/(kg 沸石)的双分子层CPB改性沸石对水中甲基橙的最大吸附容量为63.7 mg/g(303 K和pH 7)。准二级动力学模型适合用于描述双分子层CPB改性沸石对水中甲基橙的吸附动力学过程。pH和反应温度对双分子层CPB改性沸石吸附水中甲基橙的影响较小。以上结果说明,双分子层CPB改性沸石适合作为一种吸附剂用于去除废水中的甲基橙。
  • 加载中
  • [1] Hu Z.H., Chen H., Ji F., et al. Removal of Congo Red from aqueous solution by cattail root. Journal of Hazardous Materials, 2010, 173(1-3): 292-297
    [2] Chen H., Zhao J., Wu J.Y., et al. Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae. Journal of Hazardous Materials, 2011, 192(1): 246-254
    [3] 矫娜, 王东升, 段晋明, 等. 改性硅藻土对三种有机染料的吸附作用研究. 环境科学学报, 2012, 32(6): 1364-1369 Jiao N., Wang D.S., Duan J.M., et al. Adsorption of three organic dyes on modified diatomite. Acta Scientiae Circumstantiae, 2012, 32(6): 1364-1369
    [4] 冯栩, 廖银章, 李旭东, 等. 印染废水生物处理技术的进展. 印染, 2006, 32(15): 48-51 Feng X., Liao Y.Z., Li X.D., et al. Advance in biological treatment of dyeing effluent. Dyeing and Finishing, 2006, 32(15): 48-51
    [5] Kou T., Wang Y.Z., Zhang C., et al. Adsorption behavior of methyl orange onto nanoporous core-shell Cu@Cu2O nanocomposite. Chemical Engineering Journal, 2013, 223: 76-83
    [6] 钱永, 吴磊, 王建军, 等. NaOH 改性落叶松锯木屑对活性染料的吸附性能. 生态与农村环境学报, 2012, 28(4): 445-450 Qian Y., Wu L., Wang J.J., et al. Performance of NaOH modified larch sawdust adsorbing reactive dye. Journal of Ecology and Rural Environment, 2012, 28(4): 445-450(in Chinese)
    [7] Chatterjee S., Lee D.S., Lee M.W., et al. Congo Red adsorption from aqueous solutions by using chitosan hydrogel beads impregnated with nonionic or anionic surfactant. Bioresource Technology, 2009, 100(17): 3862-3868
    [8] 温东辉, 唐孝炎, 马倩如. 天然沸石铵吸附容量研究. 环境科学研究, 2003, 16(2): 31-34 Wen D.H., Tang X.Y., Ma J.R., et al. Research on the adsorption capacity for ammonium of natural zeolite. Research of Environmental Sciences, 2003, 16(2): 31-34(in Chinese)
    [9] Wang S.B., Peng Y.L. Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 2010, 156(1): 11-24
    [10] Sohrabnezhad S., Pourahmad A. Comparison absorption of new methylene blue dye in zeolite and nanocrystal zeolite. Desalination, 2010, 256(1-3): 84-89
    [11] Han R.P., Wang Y., Sun Q., et al. Malachite green adsorption onto natural zeolite and reuse by microwave irradiation. Journal of Hazardous Materials, 2010, 175(1-3): 1056-1061
    [12] Han R.P., Wang Y., Zou W.H., et al. Comparison of linear and nonlinear analysis in estimating the Thomas model parameters for methylene blue adsorption onto natural zeolite in fixed-bed column. Journal of Hazardous Materials, 2007, 145(1-2): 331-335
    [13] Wang S.B., Zhu Z.H. Characterisation and environmental application of an Australian natural zeolite for basic dye removal from aqueous solution. Journal of Hazardous Materials, 2006, 136(3): 946-952
    [14] Alpat S.K., Özbayrak Ö., Alpat S., et al. The adsorption kinetics and removal of cationic dye, Toluidine Blue O, from aqueous solution with Turkish zeolite. Journal of Hazardous Materials, 2008, 151(1): 213-220
    [15] Yener J., Kopac T., Dogu G., et al. Adsorption of Basic Yellow 28 from aqueous solutions with clinoptilolite and amberlite. Journal of Colloid and Interface Science, 2006, 294(2): 255-264
    [16] Zeng Y.B., Woo H., Lee G., et al. Removal of chromate from water using surfactant modified Pohang clinoptilolite and Haruna chabazite. Desalination, 2010, 257(1-3): 102-109
    [17] Guan H.D., Bestland E., Zhu C.Y., et al. Variation in performance of surfactant loading and resulting nitrate removal among four selected natural zeolites. Journal of Hazardous Materials, 2010, 183(1-3): 616-621
    [18] Chutia P., Kato S., Kojima T., et al. Adsorption of As(V) on surfactant-modified natural zeolites. Journal of Hazardous Materials, 2009, 162(1): 204-211
    [19] Xie J., Meng W.N., Wu D.Y. et al. Removal of organic pollutants by surfactant modified zeolite: Comparison between ionizable phenolic compounds and non-ionizable organic compounds. Journal of Hazardous Materials, 2012, 231: 57-63
    [20] Kuleyin A. Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite. Journal of Hazardous Materials, 2007, 144(1-2): 307-315
    [21] Lei C., Hu Y.Y., He M.Z. Adsorption characteristics of triclosan from aqueous solution onto cetylpyridinium bromide (CPB) modified zeolites. Chemical Engineering Journal, 2013, 219: 361-370
    [22] Simpson J.A., Bowman R.S. Nonequilibrium sorption and transport of volatile petroleum hydrocarbons in surfactant-modified zeolite. Journal of Contaminant Hydrology, 2009, 108(1-2): 1-11
    [23] Seifi L., Torabian A., Kazemian H., et al. Kinetic study of BTEX removal using granulated surfactant-modified natural zeolites nanoparticles. Water, Air & Soil Pollution, 2011, 219(1-4): 443-457
    [24] Schick J., Caullet P., Paillaud J.L., et al. Batch-wise nitrate removal from water on a surfactant-modified zeolite. Microporous and Mesoporous Materials, 2010, 132(3): 395-400
    [25] Benkli Y.E., Can M.F., Turan M., et al. Modification of organo-zeolite surface for the removal of reactive azo dyes in fixed-bed reactors. Water Research, 2005, 39(2-3): 487-493
    [26] Faki A., Turan M., Ozdemir O., et al. Analysis of fixed-bed column adsorption of Reactive Yellow 176 onto surfactant-modified zeolite. Industrial & Engineering Chemistry Research, 2008, 47(18): 6999-7004
    [27] Karadag D. Modeling the mechanism, equilibrium and kinetics for the adsorption of Acid Orange 8 onto surfactant-modified clinoptilolite: The application of nonlinear regression analysis. Dyes and Pigments, 2007, 74(3): 659-664
    [28] Torres-Pérez J., Solache-Ríos M., Olguín M.T. Sorption of azo dyes onto a Mexican surfactant-modified clinoptilolite-rich tuff. Separation Science and Technology, 2007, 42(2): 299-318
    [29] Karadag D., Turan M., Akgul E., et al. Adsorption equilibrium and kinetics of Reactive Black 5 and Reactive Red 239 in aqueous solution onto surfactant-modified zeolite. Journal of Chemical and Engineering Data, 2007, 52(5): 1615-1620
    [30] Jin X.Y., Jiang M.Q., Shan X.Q., et al. Adsorption of methylene blue and orange II onto unmodified and surfactant-modified zeolite. Journal of Colloid and Interface Science, 2008, 328(2): 243-247
    [31] Zhan Y.H., Zhu Z.L., Lin J.W., et al. Removal of humic acid from aqueous solution by cetylpyridinium bromide modified zeolite. Journal of Environmental Sciences, 2010, 22(9): 1327-1334
    [32] Li Z.H., Hong H.L. Retardation of chromate through packed columns of surfactant-modified zeolite. Journal of Hazardous Materials, 2009, 162(2-3): 1487-1493
    [33] Zhu H.Y., Jiang R., Fu Y.Q., et al. Preparation, characterization and dye adsorption properties of γ-Fe2O3/SiO2/chitosan composite. Applied Surface Science, 2011, 258(4): 1337-1344
    [34] Rožic M., Ivanec Šipušic D., Sekovanic L., et al. Sorption phenomena of modification of clinoptilolite tuffs by surfactant cations. Journal of Colloid and Interface Science, 2009, 331(2): 295-301
    [35] Malekian R., Abedi-Koupai J., Eslamian S.S. Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth. Journal of Hazardous Materials, 2011, 185(2-3): 970-976
    [36] Ding C.L., Shang C. Mechanisms controlling adsorption of natural organic matter on surfactant-modified iron oxide-coated sand. Water Research, 2010, 44(12):3651-3658
    [37] 张继义, 王龙, 李金涛, 等. 小麦秸秆生物碳质吸附剂对硝基苯的吸附性能. 环境工程学报, 2013, 7(1): 226-230 Zhang J.Y., Wang L., Li J.T., et al. Sorption properties of nitrobenzene in wastewater with biological carbon sorbent prepared by wheat straw. Chinese Journal of Environmental Engineering, 2013, 7(1): 226-230(in Chinese)
    [38] Senturk H.B., Ozdes D., Gundogdu A., et al. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study. Journal of Hazardous Materials, 2009, 172(1): 353-362
    [39] Yeddou Mezenner N., Bensmaili A. Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Chemical Engineering Journal, 2009, 147(2-3): 87-96
  • 加载中
计量
  • 文章访问数:  1657
  • HTML全文浏览数:  1113
  • PDF下载数:  782
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-08-30
  • 刊出日期:  2014-05-29
方巧, 林建伟, 詹艳慧, 杨孟娟, 郑雯婧. 溴化十六烷基吡啶改性沸石对水中甲基橙的吸附[J]. 环境工程学报, 2014, 8(6): 2211-2217.
引用本文: 方巧, 林建伟, 詹艳慧, 杨孟娟, 郑雯婧. 溴化十六烷基吡啶改性沸石对水中甲基橙的吸附[J]. 环境工程学报, 2014, 8(6): 2211-2217.
Fang Qiao, Lin Jianwei, Zhan Yanhui, Yang Mengjuan, Zheng Wenjing. Adsorption of methyl orange from aqueous solution on cetylpyridinium bromide (CPB)-modified zeolite[J]. Chinese Journal of Environmental Engineering, 2014, 8(6): 2211-2217.
Citation: Fang Qiao, Lin Jianwei, Zhan Yanhui, Yang Mengjuan, Zheng Wenjing. Adsorption of methyl orange from aqueous solution on cetylpyridinium bromide (CPB)-modified zeolite[J]. Chinese Journal of Environmental Engineering, 2014, 8(6): 2211-2217.

溴化十六烷基吡啶改性沸石对水中甲基橙的吸附

  • 1. 上海海洋大学海洋科学学院, 上海 201306
基金项目:

国家自然科学基金资助项目(50908142)

上海市科学技术委员会科研项目(10230502900)

上海高校青年教师培养资助计划项目(ZZhy12012)

摘要: 采用溴化十六烷基吡啶(CPB)对天然沸石进行改性制备得到了CPB改性沸石,通过批量吸附实验考察了CPB改性沸石对水中阴离子染料甲基橙的去除作用。结果表明,天然沸石对水中甲基橙的吸附能力很差,而CPB改性沸石则可以有效吸附去除水中的甲基橙。CPB改性沸石对水中甲基橙的吸附能力随CPB负载量的增加而增加,CPB负载量最大的改性沸石对水中甲基橙的吸附能力最强。双分子层CPB改性沸石对水中甲基橙的去除率随吸附剂投加量的增加而增加,而CPB改性沸石对水中甲基橙的单位吸附量则随吸附剂投加量的增加而降低。双分子层CPB改性沸石对水中甲基橙的吸附平衡数据可以采用Langmuir等温吸附模型加以描述。根据Langmuir模型计算得到的CPB负载量为341 mmol/(kg 沸石)的双分子层CPB改性沸石对水中甲基橙的最大吸附容量为63.7 mg/g(303 K和pH 7)。准二级动力学模型适合用于描述双分子层CPB改性沸石对水中甲基橙的吸附动力学过程。pH和反应温度对双分子层CPB改性沸石吸附水中甲基橙的影响较小。以上结果说明,双分子层CPB改性沸石适合作为一种吸附剂用于去除废水中的甲基橙。

English Abstract

参考文献 (39)

返回顶部

目录

/

返回文章
返回