排口比对污泥淤砂分离器分离效能的影响

晏鹏, 吉芳英, 王静, 范剑平, 颜达超. 排口比对污泥淤砂分离器分离效能的影响[J]. 环境工程学报, 2014, 8(9): 3596-3600.
引用本文: 晏鹏, 吉芳英, 王静, 范剑平, 颜达超. 排口比对污泥淤砂分离器分离效能的影响[J]. 环境工程学报, 2014, 8(9): 3596-3600.
Yan Peng, Ji Fangying, Wang Jing, Fan Jianping, Yan Dachao. Effect of outlet ratio on separation performance of grit separation module[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3596-3600.
Citation: Yan Peng, Ji Fangying, Wang Jing, Fan Jianping, Yan Dachao. Effect of outlet ratio on separation performance of grit separation module[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3596-3600.

排口比对污泥淤砂分离器分离效能的影响

  • 基金项目:

    国家水体污染控制与治理重大科技专项(2009ZX07318-008-003)

    重庆市重大科技专项(CSTC,2008AB7133)

  • 中图分类号: X703

Effect of outlet ratio on separation performance of grit separation module

  • Fund Project:
  • 摘要: 污泥淤砂分离器是一种能够使活性污泥中污泥有机质与淤砂分离的设备。为了实现污泥淤砂分离器的结构优化,重点探讨了污泥淤砂分离器最重要的结构参数-排口比K(底流口直径Du与溢流口直径Do之比)对污泥淤砂分离器分离效能的影响。实验结果表明,在排口比从0.32增加到1.0的过程中,分离器处理能力Qi基本保持不变,分流比S、分离效率η和底流污泥ρ(MLVSS)/ρ(MLSS)分别从0.084、24.7%和0.21增加到0.338、41.1%和0.33.4;污泥有机质富集率FMLVSS和淤砂富集率FMLISS分别从1.95和1.35减小到1.22和1.12。富集除砂所需要的K和分离器获得较高的除砂效率η时所需K不一致。污泥淤砂分离器排口比K设计为0.4~0.6时,能够获得较高的分离效率,并实现淤砂的富集排放。
  • 加载中
  • [1] 郑新灿,孙永利,尚巍,等.城镇污水处理功能提升和技术设备发展的几点思考.给水排水,2011,37(9):1-5 Zheng X. C., Sun Y. L., Shang W., et al. The reflections about the urban sewage treatment function improvement and technology equipment development. Water & Wastewater Engineering,2011,37(9):1-5(in Chinese)
    [2] 吉芳英,晏鹏.山地城市排水管网特细颗粒物特性及变化规律.环境科学研究,2012,25(3):322-327. Ji F. Y., Yan P. Characteristics and variation of superfine particles in a drainage pipe network of a mountainous city. Research of Environmental Sciences,2012,25(3):322-327(in Chinese)
    [3] Ruth R., Ron S., Bruce J., et al. Sludge minimization technologies-doing more to get less. Proceedings of the 79th Annual Water Environment Federation Technical Exposition and Conference. Alexandria Virginia, Water Environment Federation,2006.506-525
    [4] 庞学诗.水力旋流器技术与应用.北京:中国石化出版社,2010
    [5] Schubert H. Which demands should and can meet a separation model for hydrocyclone classification. International Journal of Mineral Processing,2010,96(1-4):14-26
    [6] Geoffrion M. M., Dold P. L., Lamarre D., et al. Characterizing hydrocyclone performance for grit removal from wastewater treatment activated sludge plants. Minerals Engineering,2010,23(4):359-364
    [7] Wang L. Y., Zheng Z. C., Wu Y. X., et a1. Numerical and experimental study on liquid-solid flow in a hydrocyclone. Journal of Hydrodynamic,2009,21(3):408-414
    [8] Saengchan K., Nopharatana A., Songkasiri W. Enhancement of tapioca starch separation with a hydrocyclone: Effects of apex diameter, feed concentration, and pressure drop on tapioca starch separation with a hydrocyclone. Chemical Engineering and Processing: Process Intensification,2009,48(1):195-202
    [9] Dueck J., Pikushchak E., Minkov L., et a1. Mechanism of hydrocyclone separation with water injection. Minerals Engineering,2010,23(4):289-294
    [10] Wang Z. B., Ma Y., Jin Y. H. Simulation and experiment of flow field in axial-flow hydrocyclone. Chemical Engineering Research and Design,2011,89(6):603-610
    [11] Delgadillo J.A., Rajamani R. K. Exploration of hydrocyclone designs using computational fluid dynamics. International Journal of Mineral Processing,2007,84(1-4):252-261
    [12] Kashiwaya K., Noumachi T., Hiroyoshi N., et a1. Effect of particle shape on hydrocyclone classification. Powder Technology,2012,226:147-156
    [13] Doby M. J., Nowakowski A. F., Yiu I., et al. Understanding air core formation in hydrocyclones by studying pressure distribution as a function of viscosity.International Journal of Mineral Processing,2008,86(1-3):18-25
    [14] Sripriya R., Kaulaskar M. D., Chakraborty S., et a1. Studies on the performance of a hydrocyclone and modeling for flow characterization in presence and absence of air core. Chemical Engineering Science,2007,62(22):6391-6402
    [15] Hararah M. A., Endres E., Dueck J., et al. Flow conditions in the air core of the hydrocyclone. Minerals Engineering,2010,23(4):295-300
    [16] Bai Z. H., Wang H. L., Tu S. T. Experimental study of flow patterns in deoiling hydrocyclone. Minerals Engineering,2009,22(4):319-323
    [17] 重庆大学. 一种适用于去除污水处理厂活性污泥中淤砂的分离: 中国, CN201110159013.X, 2012-01-04
    [18] 吉芳英,晏鹏,范剑平,等.污泥淤砂分离器的分离效能及影响因素.同济大学学报(自然科学版),2013,41(3):42-46 Ji Fangying, Yan Peng, Fan Jianping, et al. Separation performance and factors of grit separation module Journal of Tongji University(Natural Science),2013,41(3):42-46(in Chinese)
  • 加载中
计量
  • 文章访问数:  1759
  • HTML全文浏览数:  1138
  • PDF下载数:  540
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-08-25
  • 刊出日期:  2014-09-04
晏鹏, 吉芳英, 王静, 范剑平, 颜达超. 排口比对污泥淤砂分离器分离效能的影响[J]. 环境工程学报, 2014, 8(9): 3596-3600.
引用本文: 晏鹏, 吉芳英, 王静, 范剑平, 颜达超. 排口比对污泥淤砂分离器分离效能的影响[J]. 环境工程学报, 2014, 8(9): 3596-3600.
Yan Peng, Ji Fangying, Wang Jing, Fan Jianping, Yan Dachao. Effect of outlet ratio on separation performance of grit separation module[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3596-3600.
Citation: Yan Peng, Ji Fangying, Wang Jing, Fan Jianping, Yan Dachao. Effect of outlet ratio on separation performance of grit separation module[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3596-3600.

排口比对污泥淤砂分离器分离效能的影响

  • 1. 重庆大学三峡库区生态环境教育部重点实验室, 重庆 400045
  • 2. 重庆建筑工程职业学院, 重庆 400039
基金项目:

国家水体污染控制与治理重大科技专项(2009ZX07318-008-003)

重庆市重大科技专项(CSTC,2008AB7133)

摘要: 污泥淤砂分离器是一种能够使活性污泥中污泥有机质与淤砂分离的设备。为了实现污泥淤砂分离器的结构优化,重点探讨了污泥淤砂分离器最重要的结构参数-排口比K(底流口直径Du与溢流口直径Do之比)对污泥淤砂分离器分离效能的影响。实验结果表明,在排口比从0.32增加到1.0的过程中,分离器处理能力Qi基本保持不变,分流比S、分离效率η和底流污泥ρ(MLVSS)/ρ(MLSS)分别从0.084、24.7%和0.21增加到0.338、41.1%和0.33.4;污泥有机质富集率FMLVSS和淤砂富集率FMLISS分别从1.95和1.35减小到1.22和1.12。富集除砂所需要的K和分离器获得较高的除砂效率η时所需K不一致。污泥淤砂分离器排口比K设计为0.4~0.6时,能够获得较高的分离效率,并实现淤砂的富集排放。

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回