电絮凝过程处理含铬废水的工艺及机理

刘玉玲, 陆君, 马晓云, 李艳, 林生岭. 电絮凝过程处理含铬废水的工艺及机理[J]. 环境工程学报, 2014, 8(9): 3640-3644.
引用本文: 刘玉玲, 陆君, 马晓云, 李艳, 林生岭. 电絮凝过程处理含铬废水的工艺及机理[J]. 环境工程学报, 2014, 8(9): 3640-3644.
Liu Yuling, Lu Jun, Ma Xiaoyun, Li Yan, Lin Shengling. Technique and mechanism of electrocoagulation process for treatment of wastewater containing chromium[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3640-3644.
Citation: Liu Yuling, Lu Jun, Ma Xiaoyun, Li Yan, Lin Shengling. Technique and mechanism of electrocoagulation process for treatment of wastewater containing chromium[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3640-3644.

电絮凝过程处理含铬废水的工艺及机理

  • 基金项目:

    国家自然科学基金资助项目(51208233)

    江苏省自然科学基金资助项目(BK2012079)

  • 中图分类号: O646;X703

Technique and mechanism of electrocoagulation process for treatment of wastewater containing chromium

  • Fund Project:
  • 摘要: 以六价铬废水为处理对象,采用电絮凝过程研究了槽电压、初始浓度、初始pH值、电极材料等工艺参数对电絮凝过程分离Cr(Ⅵ)离子效率的影响机理。结果表明,采用Fe/Fe电极,对初始浓度为105 mg/L的Cr(Ⅵ)离子废水,最优槽电压为4 V,初始pH值为6,电解60 min,去除率可达到98.84%。Cr(Ⅵ)的去除率随着槽电压的升高而增大,随着初始浓度以及初始pH值的增加而减小。研究发现,初始pH值决定电絮凝过程中Cr(Ⅵ)的主要去除方式,在偏中性范围内Cr(Ⅵ)主要通过絮体吸附作用去除。对不同电极材料的电絮凝过程电解产生的絮体进行了初步分析,结果表明,絮体成分因电极不同而异,不同絮体对重金属离子吸附能力的差异也较大。
  • 加载中
  • [1] Mohan D.,Singh K.P.,Singh V.K. Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth. Industrial and Engineering Chemistry Research,2005,44(4): 1027-1042
    [2] Mohan D.,Singh K.P.,Singh V.K. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. Journal of Hazardous Materials,2006,135(1-3): 280-295
    [3] Akshaya K.V.,Rajesh R.D.,Puspendu B.,et al. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management,2012,93(1): 154-168
    [4] Fu F.L.,Xie L.P.,Tang B.,et al. Application of a novel strategy-Advanced Fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater. Chemical Engineering Journal,2012,189: 283-287
    [5] Choi H.D.,Cho J.M.,Baek K.,et al. Influence of cationic surfactant on adsorption of Cr(Ⅵ) onto activated carbon. Journal of Hazardous Materials,2009,161(2-3): 1565-1568
    [6] Ahmed A.T.,Wu Y.N.,Li F.T.,et al. Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr(Ⅵ) ion removal from aqueous solution. Journal of Environmental Management,2012,112: 10-16
    [7] Bhatti M.S.,Reddy A.S.,Thukral A.K.,et al. Modeling and optimization of voltage and treatment time for electrocoagulation removal of hexavalent chromium. Desalination,2011,269(1-3): 157-162
    [8] 李向东,冯启言,宋均轲,等. 电絮凝处理煤层气产出水.环境工程学报,2012,6(3): 744-748 Li X.D.,Feng Q.Y.,Song J.K.,et al. Treatment of water produced with coal-bed methane by electrocoagulation. Chinese Journal of Environmental Engineering,2012,6(3): 744-748(in Chinese)
    [9] 陈斌,王海峰,吴明铂,等. 电絮凝处理油田生化出水.环境工程学报,2012,6(7): 2154-2158 Chen B.,Wang H.F.,Wu M.B.,et al. Electrocoagulation treatment of oilfield biochemical sewage. Chinese Journal of Environmental Engineering,2012,6(7): 2154-2158(in Chinese)
    [10] Divagar L.,Dennisa C.,Gautam S. Ferrous and ferric ion generation during iron electrocoagulation. Environmental Science & Technology,2009,43(10): 3853-3859
    [11] Golder A.K., Samanta A.N.,Ray S.,et al. Removal of Cr(Ⅵ) from aqueous solution: Electrocoagulation vs chemical coagulation. Separation Science and Technology,2007,42(10): 2177-2193
    [12] Tugbaömez. The optimization of Cr(Ⅵ) reduction and removal by electrocoagulation using response surface methodology. Journal of Hazardous Materials,2009,162(2-3):1371-1378
    [13] Golder A.K.,Samanta A.N.,Ray S. Removal of Cr3+ by electrocoagulation with multiple electrodes: Bipolar and monopolar configurations. Journal of Hazardous Materials,2007,141(3):653-661
    [14] Keshmirizadeh E.,Somayeh Y.,Mohammad K. R. An investigation on the new operational parameter effective in Cr(Ⅵ) removal efficiency: A study on electrocoagulation by alternating pulse current. Journal of Hazardous Materials,2011,190(1-3):119-124
    [15] Aber S.,Amani-Ghadim A.R.,Mirzajani V. Removal of Cr(Ⅵ) from polluted solutions by electrocoagulation: Modeling of experimental results using artificial neural network. Journal of Hazardous Materials,2009,171(1-3): 484-490
    [16] Arroyo M.G.,Pérez H.V.,Montanés M.T.,et al. Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor. Journal of Hazardous Materials,2009,169(1-3): 1127-1133
  • 加载中
计量
  • 文章访问数:  2000
  • HTML全文浏览数:  1256
  • PDF下载数:  576
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-10-22
  • 刊出日期:  2014-09-04
刘玉玲, 陆君, 马晓云, 李艳, 林生岭. 电絮凝过程处理含铬废水的工艺及机理[J]. 环境工程学报, 2014, 8(9): 3640-3644.
引用本文: 刘玉玲, 陆君, 马晓云, 李艳, 林生岭. 电絮凝过程处理含铬废水的工艺及机理[J]. 环境工程学报, 2014, 8(9): 3640-3644.
Liu Yuling, Lu Jun, Ma Xiaoyun, Li Yan, Lin Shengling. Technique and mechanism of electrocoagulation process for treatment of wastewater containing chromium[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3640-3644.
Citation: Liu Yuling, Lu Jun, Ma Xiaoyun, Li Yan, Lin Shengling. Technique and mechanism of electrocoagulation process for treatment of wastewater containing chromium[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3640-3644.

电絮凝过程处理含铬废水的工艺及机理

  • 1. 江苏科技大学环境与化学工程学院, 镇江 212003
基金项目:

国家自然科学基金资助项目(51208233)

江苏省自然科学基金资助项目(BK2012079)

摘要: 以六价铬废水为处理对象,采用电絮凝过程研究了槽电压、初始浓度、初始pH值、电极材料等工艺参数对电絮凝过程分离Cr(Ⅵ)离子效率的影响机理。结果表明,采用Fe/Fe电极,对初始浓度为105 mg/L的Cr(Ⅵ)离子废水,最优槽电压为4 V,初始pH值为6,电解60 min,去除率可达到98.84%。Cr(Ⅵ)的去除率随着槽电压的升高而增大,随着初始浓度以及初始pH值的增加而减小。研究发现,初始pH值决定电絮凝过程中Cr(Ⅵ)的主要去除方式,在偏中性范围内Cr(Ⅵ)主要通过絮体吸附作用去除。对不同电极材料的电絮凝过程电解产生的絮体进行了初步分析,结果表明,絮体成分因电极不同而异,不同絮体对重金属离子吸附能力的差异也较大。

English Abstract

参考文献 (16)

返回顶部

目录

/

返回文章
返回