SPG膜微气泡曝气生物膜反应器运行性能——空气通量的影响

张明, 刘春, 张磊, 张静, 杨景亮, 年永嘉. SPG膜微气泡曝气生物膜反应器运行性能——空气通量的影响[J]. 环境工程学报, 2014, 8(10): 4067-4073.
引用本文: 张明, 刘春, 张磊, 张静, 杨景亮, 年永嘉. SPG膜微气泡曝气生物膜反应器运行性能——空气通量的影响[J]. 环境工程学报, 2014, 8(10): 4067-4073.
Zhang Ming, Liu Chun, Zhang Lei, Zhang Jing, Yang Jingliang, Nian Yongjia. Performance of a microbubble-aerated biofilm reactor using SPG membrane system:Effect of air flux[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4067-4073.
Citation: Zhang Ming, Liu Chun, Zhang Lei, Zhang Jing, Yang Jingliang, Nian Yongjia. Performance of a microbubble-aerated biofilm reactor using SPG membrane system:Effect of air flux[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4067-4073.

SPG膜微气泡曝气生物膜反应器运行性能——空气通量的影响

  • 基金项目:

    国家自然科学基金资助项目( 51008111)

    河北省应用基础研究计划重点基础研究项目( 11966726D)

  • 中图分类号: X703

Performance of a microbubble-aerated biofilm reactor using SPG membrane system:Effect of air flux

  • Fund Project:
  • 摘要: 空气通量是影响SPG膜微气泡曝气生物膜反应器运行性能的重要参数。在不同空气通量条件下,考察了微气泡产生特性及氧传质特性,以及SPG膜微气泡曝气生物膜反应器运行性能。结果表明,当空气通量由31.85 L/(min·m2)降低至12.74 L/(min·m2)时,产生的微气泡平均直径由62.9 μm减小到32.6 μm,氧传质系数由0.31 min-1降低至0.19 min-1,但氧传质效率由67.7%提高至90.3%。生物膜反应器DO浓度随空气通量的降低而下降,导致生物膜好氧代谢活性下降,进而COD和氨氮去除效率降低;同时,在较低DO浓度下,可实现同步硝化反硝化过程去除TN。随着空气通量的降低,生物膜反应器氧利用率增加,空气通量为12.74 L/(min·m2)时,可接近100%;同时,曝气能耗降低,在相同条件下能耗低于传统大气泡曝气。
  • 加载中
  • [1] 穆瑞林, 刘大军. 国内曝气设备述评. 给水排水, 1992, 18(6): 34-37 Mu Ruilin, Liu Dajun.Commentary domestic aeration equipment.Water & Wastewater Engineering, 1992, 18(6): 34-37 (in Chinese)
    [2] 杨春玲, 张有忱, 黎镜中. 新型气液混输型曝气增氧设备性能. 化工进展, 2011, 30(3): 483-487 Yang Chunling, Zhang Youchen, Li Jingzhong. Study on aeration performance of a new gas-liquid increasing oxygen aeration equipment. Chemical Industry and Engineering Progress, 2011, 30(3): 483-487 (in Chinese)
    [3] 吴媛媛, 周小红, 施汉昌, 等. 污水厂微孔曝气系统工况下充氧性能测试与分析. 环境科学, 2013, 34(1): 194-197 Wu Yuanyuan, Zhou Xiaohong, Shi Hanchang, et al. Measurement and analysis of micropore aeration system’s oxygenating ability under operation condition in waste water treatment plant. Environmental Science, 2013, 34(1): 194-197 (in Chinese)
    [4] Gillot S., Duit A. Effect of air flow rate on oxygen transfer in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers. Water Research, 2000, 34(5): 1756-1762
    [5] Fayolle Y., Cockx A., Gillot S., et al. Oxygen transfer prediction in aeration tanks using CFD. Chemical Engineering Science, 2007, 62(24): 7163-7171
    [6] Rosso D., Stenstrom M. K. Surfactant effects on α-factors in aeration systems. Water Research, 2006, 40(7): 1397-1404
    [7] Takahashi M., Kawamura T., Yammoto Y., et al. Effect of shrinking microbubble on gas hydrate formation. The Journal of Physical Chemistry B, 2003, 107(10): 2171-2173
    [8] Takahashi M. ζ Potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface.Journal of Physical Chemistry B, 2005, 109(46): 21858-21864
    [9] Chu Libing, Yan Sangtian, Xing Xinhui, et al. Enhanced sludge solubilization by microbubble ozonation. Chemosphere, 2008, 72(2): 205-212
    [10] Liu Shu, Wang Qunhui, Ma Hongzhi, et al. Effect of micro-bubbles on coagulation flotation process of dyeing wastewater. Separation and Purification Technology, 2010, 71(3): 337-346
    [11] Burns S. E., Yiacoumi S., Tsouris C.Microbubble generation for environmental and industrial separations. Separation and Purification Technology, 1997, 11(3): 221-232
    [12] Kukizaki M., Goto M. Size control of nanobubbles generated form Shirasu-porous-glass (SPG) membranes. Journal of Membrane Science, 2006, 281(1-2): 386-396
    [13] Kukizaki M., Wada T. Effect of the membranne wettability on the size and size distribution of microbubbles formed from Shirasu-porous-glass (SPG) membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317(1-3): 146-154
    [14] Kukizaki M., Fujimoto K., Kai S., et al. Ozone mass transfer in an ozone-water contacting process with Shirasu porous glass (SPG) membranes:A comparative study of hydrophilic and hydrophobic membranes. Separation and Purification Technology, 2010, 72(3): 347-356
    [15] Bredwell M. D., Worden R. M. Mass-transfer properties of microbubbles(I): Experimental studies. Biotechnology Progress, 1998, 14(1): 31-38
    [16] 刘春, 马锦, 张磊, 等. 微气泡及其产生方式对活性污泥混合液性质的影响. 环境科学, 2013, 34(1): 198-203 Liu Chun, Ma Jin, Zhang Lei, et al. Influence of microbubble and its generation process on mixed liquor properties of activated sludge. Environmental Science, 2013, 34(1):198-203 (in Chinese)
    [17] 张磊, 刘平, 马锦, 等. 基于微气泡曝气的生物膜反应器处理废水研究. 环境科学, 2013, 34(6): 2277-2282 Zhang Lei, Liu Ping, Ma Jin, et al. Wastewater treatment using a microbubble aerated biofilm reactor. Environmental Science, 2013, 34(6): 2277-2282 (in Chinese)
    [18] Huang Xia, Liu Rui, Qian Yi. Behaviour of soluble microbial products in a membrane bioreactor. Process Biochemistry, 2000, 35(5): 401-406
    [19] 王建龙, 吴立波, 齐星, 等. 用氧吸收速率(OUR)表征活性污泥硝化活性的研究. 环境科学学报, 1999, 19(3): 225-229 Wang Jianlong, Wu Libo, Qi Xing, et al. Characterization of nitrification activity of activated sludge by oxygen uptake rate(OUR). Acta Scientiae Circumstantiae, 1999, 19(3): 225-229 (in Chinese)
    [20] 孙艳, 李若谷, 张雁秋. 城市污水处理厂活性污泥呼吸速率的研究. 能源环境保护, 2011, 25(1): 19-22 Sun Yan, Li Ruogu, Zhang Yanqiu. Determination of the OUR in wastewater treatment plants with a manometric respiromete. Energy Environmental Protection, 2011, 25(1): 19-22 (in Chinese)
    [21] 刘春, 张磊, 杨景亮, 等. 微气泡曝气中氧传质特性研究. 环境工程学报, 2010, 4(3): 585-589 Liu Chun, Zhang Lei, Yang Jingliang, et al. Characteristics of oxygen transfer in microbubble aeration. Chinese Journal of Environmental Engineering, 2010, 4(3): 585-589 (in Chinese)
    [22] 杨帅, 杨凤林, 付志敏. 移动床膜生物反应器同步硝化反硝化特性. 环境科学, 2009, 30(3): 803-808 Yang Shuai, Yang Fenglin, Fu Zhimin. Characteristics of simultaneous nitrification and denitrification in moving bed membrane bioreactor. Environmental Science, 2009, 30(3): 803-808 (in Chinese)
    [23] 田淼, 张永祥, 张粲, 等. DO与MBBR反应器同步硝化反硝化脱氮关系研究. 中国水运, 2010, 10(5): 124-126 Tian Miao, Zhang Yongxiang, Zhang Can, et al. Determination of the relationship between DO and simultaneous nitrification and denitrification in MBBR. China Water Transport, 2010, 10(5): 124-126 (in Chinese)
    [24] 张可方, 凌忠勇, 荣宏伟, 等. SBBR中DO对亚硝酸型同步硝化反硝化的影响. 广州大学学报, 2008, 7(6): 54-58 Zhang Kefang, Ling Zhongyong, Rong Hongwei, et al. Effection of DO on simultaneous nitrification and denitrification via nitrite in SBBR. Journal of Guangzhou University, 2008, 7(6): 54-58 (in Chinese)
  • 加载中
计量
  • 文章访问数:  2007
  • HTML全文浏览数:  1314
  • PDF下载数:  905
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-11-12
  • 刊出日期:  2014-09-28
张明, 刘春, 张磊, 张静, 杨景亮, 年永嘉. SPG膜微气泡曝气生物膜反应器运行性能——空气通量的影响[J]. 环境工程学报, 2014, 8(10): 4067-4073.
引用本文: 张明, 刘春, 张磊, 张静, 杨景亮, 年永嘉. SPG膜微气泡曝气生物膜反应器运行性能——空气通量的影响[J]. 环境工程学报, 2014, 8(10): 4067-4073.
Zhang Ming, Liu Chun, Zhang Lei, Zhang Jing, Yang Jingliang, Nian Yongjia. Performance of a microbubble-aerated biofilm reactor using SPG membrane system:Effect of air flux[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4067-4073.
Citation: Zhang Ming, Liu Chun, Zhang Lei, Zhang Jing, Yang Jingliang, Nian Yongjia. Performance of a microbubble-aerated biofilm reactor using SPG membrane system:Effect of air flux[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4067-4073.

SPG膜微气泡曝气生物膜反应器运行性能——空气通量的影响

  • 1. 河北科技大学环境科学与工程学院, 石家庄 050080
基金项目:

国家自然科学基金资助项目( 51008111)

河北省应用基础研究计划重点基础研究项目( 11966726D)

摘要: 空气通量是影响SPG膜微气泡曝气生物膜反应器运行性能的重要参数。在不同空气通量条件下,考察了微气泡产生特性及氧传质特性,以及SPG膜微气泡曝气生物膜反应器运行性能。结果表明,当空气通量由31.85 L/(min·m2)降低至12.74 L/(min·m2)时,产生的微气泡平均直径由62.9 μm减小到32.6 μm,氧传质系数由0.31 min-1降低至0.19 min-1,但氧传质效率由67.7%提高至90.3%。生物膜反应器DO浓度随空气通量的降低而下降,导致生物膜好氧代谢活性下降,进而COD和氨氮去除效率降低;同时,在较低DO浓度下,可实现同步硝化反硝化过程去除TN。随着空气通量的降低,生物膜反应器氧利用率增加,空气通量为12.74 L/(min·m2)时,可接近100%;同时,曝气能耗降低,在相同条件下能耗低于传统大气泡曝气。

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回