昆明市污水处理厂运行综合评价

李波, 吴光学, 胡洪营, 吴毅晖, 郭昉, 郭玉梅. 昆明市污水处理厂运行综合评价[J]. 环境工程学报, 2014, 8(10): 4175-4182.
引用本文: 李波, 吴光学, 胡洪营, 吴毅晖, 郭昉, 郭玉梅. 昆明市污水处理厂运行综合评价[J]. 环境工程学报, 2014, 8(10): 4175-4182.
Li Bo, Wu Guangxue, Hu Hongying, Wu Yihui, Guo Fang, Guo Yumei. Comprehensive evaluation of performance of wastewater treatment plants in Kunming[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4175-4182.
Citation: Li Bo, Wu Guangxue, Hu Hongying, Wu Yihui, Guo Fang, Guo Yumei. Comprehensive evaluation of performance of wastewater treatment plants in Kunming[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4175-4182.

昆明市污水处理厂运行综合评价

  • 基金项目:

    国家“水体污染控制与治理”科技重大专项(2012ZX-07302002)

    深圳市科工贸信委基础研究计划项目(JC201006030878A)

  • 中图分类号: X703

Comprehensive evaluation of performance of wastewater treatment plants in Kunming

  • Fund Project:
  • 摘要: 应用技术性能、经济成本、环境影响(温室效应和富营养化效应)指标,对采用氧化沟、ICEAS、3AMBR和A2O 4种不同工艺的昆明市7座污水处理厂运行进行综合评价。各污水处理厂对BOD、SS和NH4+-N都具有较高的去除率,在91%以上;COD去除率在86%以上;TP去除率在86%~96%之间;TN去除率在59%~76%之间。污水处理厂的运行经济成本同工艺类型和进出水水质密切相关,经济成本主要来源于电耗;采用3AMBR工艺的污水处理厂经济成本远高于其他污水处理厂。温室气体主要来源于电耗和出水一氧化二氮释放,其中3AMBR工艺具有最大的温室气体释放量。出水污染物中对富营养化效应贡献最大的为硝酸盐,不同类型工艺出水造成的富营养化效应差别不大。结合污染物去除性能和综合成本进行分析,ICEAS工艺具有最好的综合性能,而3AMBR工艺综合性能相对较差。
  • 加载中
  • [1] Beery M.,Repke J.U.Sustainability analysis of different SWRO pre-treatment alternatives.Desalination and Water Treatment,2010,16(1-3):218-228
    [2] Bonton A.,Bouchard C.,Barbeau B.,et al.Comparative life cycle assessment of water treatment plants.Desalination,2012,284:42-54
    [3] Yerushalmi L.,Haghighat F.,Bani Shahabadi M.Contribution of on-site and off-site processes to greenhouse gas (ghg) emissions by wastewater treatment plants.World Academy of Science,Engineering and Technology,2009,3:525-529
    [4] Pasqualino J.C.,Meneses M.,Abella M.,et al.LCA as a decision support tool for the environmental improvement of the operation of a municipal wastewater treatment plant.Environmental Science & Technology,2009,43(9):3300-3307
    [5] Coats E.R.,Watkins D.L.,Kranenburg D.A comparative environmental life-cycle analysis for removing phosphorus from wastewater:biological versus physical/chemical processes.Water Environment Research,2011,83(8):750-760
    [6] Corominas L.I.,Foley J.,Guest J.S.,et al.Life cycle assessment applied to wastewater treatment:State of the art.Water Research,2013,47(15):5480-5492
    [7] Cao Y.C.,Paw?owski A.Life cycle assessment of two emerging sewage sludge-to-energy systems:Evaluating energy and greenhouse gas emissions implications.Bioresource Technology,2013,127:81-91
    [8] Rodriguez-Garcia G.,Molinos-Senante M.,Hospido A.,et al.Environmental and economic profile of six typologies of wastewater treatment plants.Water Research,2011,45(18):5997-6010
    [9] Li Y.,Luo X.,Huang X.,et al.Life cycle assessment of a municipal wastewater treatment plant:a case study in Suzhou,China.Journal of Cleaner Production,2013,51(15):221-227
    [10] Diksha G.,Singh K.S.Greenhouse gas emissions from wastewater treatment plants:A case study of Noida.Journal of Water Sustainability,2012,2(2):131-139
    [11] 谢淘,汪诚文.污水处理厂GHG排放评估.清华大学学报:自然科学版,2012,52(4):473-477 Xie Tao,Wang Chengwen.Greenhouse gas emissions from wastewater treatment plants.Journal of Tsinghua University (Science & Technology),2012,52(4):473-477(in Chinese)
    [12] De Haas D.,Foley J.,Barr K.Greenhouse gas inventories from WWTPs the trade-off with nutrient removal.// Proceedings of the Water Environment Federation.Sustainability,2008:264-285
    [13] IPCC.IPCC Guidelines for National Greenhouse Gas Inventories.IGES,Japan,2006
    [14] Guinée J.B.,Gorrée M.,Heijungs R.,et al.Handbook on Life Cycle Assessment:Operational Guide to the ISO Standards.Netherlands:Springer,2002:1-708
    [15] Copp J.B.,Spanjers H.,Vanrolleghem P.A.Respirometry in Control of the Activated Sludge Process:Benchmarking Control Strategies.IWA Publishing,2002
    [16] Wu X.,Zhang Z.H.,Chen Y.M.Study of the environmental impacts based on the "green tax"-applied to several types of building materials.Building and Environment,2005,40:227-237
    [17] Hernandez-Rojas M.E.,Van Kaam R.,Schetrite S.,et al.Role and variations of supernatant compounds in submerged membrane bioreactor fouling.Desalination,2005,179(1-3):95-107
    [18] Côté P.,Siverns S.,Monti S.Comparison of membrane-based solutions for water reclamation and desalination.Desalination,2005,182(1-3):251-257
    [19] Hospido A.,Sanchez I.,Rodriguez-Garcia G.,et al.Are all membrane reactors equal from an environmental point of view? Desalination,2012,285:263-270
    [20] 黄浩华,张杰,文湘华,等.城市污水处理厂A2/O工艺的节能降耗途径研究.环境工程学报,2009,3(1):35-38 Huang Haohua,Zhang Jie,Wen Xianghua,et al.Study on energy saving methods for A2/O process in wastewater treatment plants.Chinese Journal of Environmental Engineering,2009,3(1):35-38(in Chinese)
    [21] 杨凌波,曾思育,鞠宇平,等.我国城市污水处理厂能耗规律的统计分析与定量识别.给水排水,2008,34(10):42-45
    [22] Bott C.B.,Parker D.S.,Jimenez J.,et al.WEF/WERF study of BNR plants achieving very low N and P limits:Evaluation of technology performance and process reliability.Water Science and Technology,2012,65(5):808-815
  • 加载中
计量
  • 文章访问数:  2266
  • HTML全文浏览数:  1454
  • PDF下载数:  852
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-10-28
  • 刊出日期:  2014-09-28
李波, 吴光学, 胡洪营, 吴毅晖, 郭昉, 郭玉梅. 昆明市污水处理厂运行综合评价[J]. 环境工程学报, 2014, 8(10): 4175-4182.
引用本文: 李波, 吴光学, 胡洪营, 吴毅晖, 郭昉, 郭玉梅. 昆明市污水处理厂运行综合评价[J]. 环境工程学报, 2014, 8(10): 4175-4182.
Li Bo, Wu Guangxue, Hu Hongying, Wu Yihui, Guo Fang, Guo Yumei. Comprehensive evaluation of performance of wastewater treatment plants in Kunming[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4175-4182.
Citation: Li Bo, Wu Guangxue, Hu Hongying, Wu Yihui, Guo Fang, Guo Yumei. Comprehensive evaluation of performance of wastewater treatment plants in Kunming[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4175-4182.

昆明市污水处理厂运行综合评价

  • 1. 清华大学深圳研究生院环境微生物利用与安全控制重点实验室, 深圳 518055
  • 2. 滇池水务股份有限公司, 昆明 650228
基金项目:

国家“水体污染控制与治理”科技重大专项(2012ZX-07302002)

深圳市科工贸信委基础研究计划项目(JC201006030878A)

摘要: 应用技术性能、经济成本、环境影响(温室效应和富营养化效应)指标,对采用氧化沟、ICEAS、3AMBR和A2O 4种不同工艺的昆明市7座污水处理厂运行进行综合评价。各污水处理厂对BOD、SS和NH4+-N都具有较高的去除率,在91%以上;COD去除率在86%以上;TP去除率在86%~96%之间;TN去除率在59%~76%之间。污水处理厂的运行经济成本同工艺类型和进出水水质密切相关,经济成本主要来源于电耗;采用3AMBR工艺的污水处理厂经济成本远高于其他污水处理厂。温室气体主要来源于电耗和出水一氧化二氮释放,其中3AMBR工艺具有最大的温室气体释放量。出水污染物中对富营养化效应贡献最大的为硝酸盐,不同类型工艺出水造成的富营养化效应差别不大。结合污染物去除性能和综合成本进行分析,ICEAS工艺具有最好的综合性能,而3AMBR工艺综合性能相对较差。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回