正渗透复合膜的制备及表征

宁静恒, 赵俊, 李玉平, 曹宏斌, 李海波. 正渗透复合膜的制备及表征[J]. 环境工程学报, 2014, 8(10): 4183-4190.
引用本文: 宁静恒, 赵俊, 李玉平, 曹宏斌, 李海波. 正渗透复合膜的制备及表征[J]. 环境工程学报, 2014, 8(10): 4183-4190.
Ning Jingheng, Zhao Jun, Li Yuping, Cao Hongbin, Li Haibo. Fabrication and characterization of thin-film composite membrane for forward osmosis[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4183-4190.
Citation: Ning Jingheng, Zhao Jun, Li Yuping, Cao Hongbin, Li Haibo. Fabrication and characterization of thin-film composite membrane for forward osmosis[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4183-4190.

正渗透复合膜的制备及表征

  • 基金项目:

    国家自然科学基金资助项目(21177130,21377130)

  • 中图分类号: X 703.1

Fabrication and characterization of thin-film composite membrane for forward osmosis

  • Fund Project:
  • 摘要: 通过在聚砜铸膜液中加入混合添加剂氯化锂和聚乙烯吡咯烷酮(PVP),用相转移法制备出多孔支撑层,然后通过界面聚合制备聚酰胺正渗透复合膜,重点研究了添加剂和聚砜浓度对膜结构和性能的影响。结果表明,氯化锂使得膜支撑层指状孔更加均一,提高孔隙率,并降低海绵层的厚度,提高了水通量;PVP增强了膜的亲水性,并易于成膜,在保持截盐率的同时提高了水通量;随着聚砜浓度增大,支撑层孔隙率变小,海绵状孔层变厚,生成的聚酰胺层更加致密,加重过程内浓差极化,水通量降低。采用质量分数为9%聚砜同时添加氯化锂和PVP的膜支撑层结构均一,孔隙率较大(68.0%),表面亲水性较强(接触角48.5°),优于2种商用三醋酸纤维素正渗透膜的孔隙率(32.6%和25.4%)和接触角(76.5°和73.5°);在正渗透过程中的自制膜水通量为21.9 L/(m2·h),均高于2种商用三醋酸纤维素正渗透膜(9.5和14.4 L/(m2·h))和文献报道的正渗透复合膜通量水平,并维持了一定的截盐率(盐通量为19.9 g/(m2·h)),表现出优异的正渗透性能。
  • 加载中
  • [1] McGinnis R.L.,Elimelech M.Global challenges in energy and water supply:The promise of engineered osmosis.Environmental Science & Technology,2008,42(23):8625-8629
    [2] Shannon M.A.,Bohn P.W.,Elimelech M.,et al.Science and technology for water purification in the coming decades.Nature,2008,452(7185):301-310
    [3] Elimelech M.,Phillip W.A.The future of seawater desalination:Energy,technology,and the environment.Science,2011,333(6043):712-717
    [4] Cath T.,Childress A.,Elimelech M.Forward osmosis:Principles,applications,and recent developments.Journal of Membrane Science,2006,281(1-2):70-87
    [5] Achilli A.,Cath T.Y.,Marchand E.A.,et al.The forward osmosis membrane bioreactor:A low fouling alternative to MBR processes.Desalination,2009,239(1-3):10-21
    [6] McCutcheon J.R.,McGinnis R.L.,Elimelech M.A novel ammonia-carbon dioxide forward (direct) osmosis desalination process.Desalination,2005,174(1):1-11
    [7] Garcia-Castello E.M.,McCutcheon J.R.,Elimelech M.Performance evaluation of sucrose concentration using forward osmosis.Journal of Membrane Science,2009,338(1-2):61-66
    [8] Cornelissen E.R.,Harmsen D.,de Korte K.F.,et al.Membrane fouling and process performance of forward osmosis membranes on activated sludge.Journal of Membrane Science,2008,319(1):158-168
    [9] Dova M.I.,Petrotos K.B.,Lazarides H.N.On the direct osmotic concentration of liquid foods.Part I:Impact of process parameters on process performance.Journal of Food Engineering,2007,78(2):422-430
    [10] Petrotos K.B.,Lazarides H.N.Osmotic concentration of liquid foods.Journal of Food Engineering,2001,49(2-3):201-206
    [11] Zhao S.F.,Zou L.D.,Tang C.Y.,et al.Recent developments in forward osmosis:Opportunities and challenges.Journal of Membrane Science,2012,396:1-21
    [12] Wang R.,Shi L.,Tang C.Y.,et al.Characterization of novel forward osmosis hollow fiber membranes.Journal of Membrane Science,2010,355(1-2):158-167
    [13] McCutcheon J.R.,Elimelech M.Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis.Journal of Membrane Science,2006,284(1-2):237-247
    [14] Zhang S.,Wang K.Y.,Chung T.S.,et al.Well-constructed cellulose acetate membranes for forward osmosis:Minimized internal concentration polarization with an ultra-thin selective layer.Journal of Membrane Science,2010,360(1-2):522-535
    [15] McCutcheon J.R.,McGinnis R.L.,Elimelech M.Desalination by ammonia-carbon dioxide forward osmosis:Influence of draw and feed solution concentrations on process performance.Journal of Membrane Science,2006,278(1-2):114-123
    [16] Mehta G.D.,Loeb S.Internal polarization in the porous substructure of a semipermeable membrane under pressure-retarded osmosis.Journal of Membrane Science,1979,4:261-265
    [17] Gray G.T.,McCutcheon J.R.,Elimelech M.Internal concentration polarization in forward osmosis:Role of membrane orientation.Desalination,2006,197(1-3):1-8
    [18] Mehta G.,Loeb S.Performance of Permasep B-9 and B-10 membranes in various osmotic regions and at high osmotic pressures.Journal of Membrane Science,1979,4:335-349
    [19] Setiawan L.,Wang R.,Li K.,et al.Fabrication of novel poly (amide-imide) forward osmosis hollow fiber membranes with a positively charged nanofiltration-like selective layer.Journal of Membrane Science,2011,369(1-2):196-205
    [20] Yip N.Y.,Tiraferri A.,Phillip W.A.,et al.High performance thin-film composite forward osmosis membrane.Environmental Science & Technology,2010,44(10):3812-3818
    [21] Wang K.Y.,Chung T.S.,Amy G.Developing thin-film-composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization.Aiche Journal,2012,58(3):770-781
    [22] 时钧,袁权,高从堦.膜技术手册.北京:化学工业出版社,2001
    [23] Bokhorst H.,Altena F.,Smolders C.Formation of asymmetric cellulose acetate membranes.Desalination,1981,38:349-360
    [24] Hansen C.M.Hansen Solubility Parameters:A User’s Handbook.Boca Raton:CRC Press,2007
    [25] McCutcheon J.R.,Elimelech M.Modeling water flux in forward osmosis:Implications for improved membrane design.Aiche Journal,2007,53(7):1736-1744
    [26] McKelvey S.A.,Koros W.J.Phase separation,vitrification,and the manifestation of macrovoids in polymeric asymmetric membranes.Journal of Membrane Science,1996,112(1):29-39
    [27] Tang C.Y.,Kwon Y.N.,Leckie J.O.Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes:II.Membrane physiochemical properties and their dependence on polyamide and coating layers.Desalination,2009,242(1-3):168-182
    [28] Widjojo N.,Chung T.S.,Weber M.,et al.The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes.Journal of Membrane Science,2011,383(1-2):214-223
  • 加载中
计量
  • 文章访问数:  1878
  • HTML全文浏览数:  1198
  • PDF下载数:  933
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-12-30
  • 刊出日期:  2014-09-28
宁静恒, 赵俊, 李玉平, 曹宏斌, 李海波. 正渗透复合膜的制备及表征[J]. 环境工程学报, 2014, 8(10): 4183-4190.
引用本文: 宁静恒, 赵俊, 李玉平, 曹宏斌, 李海波. 正渗透复合膜的制备及表征[J]. 环境工程学报, 2014, 8(10): 4183-4190.
Ning Jingheng, Zhao Jun, Li Yuping, Cao Hongbin, Li Haibo. Fabrication and characterization of thin-film composite membrane for forward osmosis[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4183-4190.
Citation: Ning Jingheng, Zhao Jun, Li Yuping, Cao Hongbin, Li Haibo. Fabrication and characterization of thin-film composite membrane for forward osmosis[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4183-4190.

正渗透复合膜的制备及表征

  • 1.  长沙理工大学化学与生物工程学院, 长沙 410004
  • 2.  中国科学院过程工程研究所绿色过程与工程重点实验室, 北京 100190
基金项目:

国家自然科学基金资助项目(21177130,21377130)

摘要: 通过在聚砜铸膜液中加入混合添加剂氯化锂和聚乙烯吡咯烷酮(PVP),用相转移法制备出多孔支撑层,然后通过界面聚合制备聚酰胺正渗透复合膜,重点研究了添加剂和聚砜浓度对膜结构和性能的影响。结果表明,氯化锂使得膜支撑层指状孔更加均一,提高孔隙率,并降低海绵层的厚度,提高了水通量;PVP增强了膜的亲水性,并易于成膜,在保持截盐率的同时提高了水通量;随着聚砜浓度增大,支撑层孔隙率变小,海绵状孔层变厚,生成的聚酰胺层更加致密,加重过程内浓差极化,水通量降低。采用质量分数为9%聚砜同时添加氯化锂和PVP的膜支撑层结构均一,孔隙率较大(68.0%),表面亲水性较强(接触角48.5°),优于2种商用三醋酸纤维素正渗透膜的孔隙率(32.6%和25.4%)和接触角(76.5°和73.5°);在正渗透过程中的自制膜水通量为21.9 L/(m2·h),均高于2种商用三醋酸纤维素正渗透膜(9.5和14.4 L/(m2·h))和文献报道的正渗透复合膜通量水平,并维持了一定的截盐率(盐通量为19.9 g/(m2·h)),表现出优异的正渗透性能。

English Abstract

参考文献 (28)

返回顶部

目录

/

返回文章
返回