电混凝去除水中锑污染物

张家兴, 王超, 杨波, 张宝锋, 赵旭. 电混凝去除水中锑污染物[J]. 环境工程学报, 2014, 8(10): 4244-4248.
引用本文: 张家兴, 王超, 杨波, 张宝锋, 赵旭. 电混凝去除水中锑污染物[J]. 环境工程学报, 2014, 8(10): 4244-4248.
Zhang Jiaxing, Wang Chao, Yang Bo, Zhang Baofeng, Zhao Xu. Removal of antimony contaminant in water by electrocoagulation[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4244-4248.
Citation: Zhang Jiaxing, Wang Chao, Yang Bo, Zhang Baofeng, Zhao Xu. Removal of antimony contaminant in water by electrocoagulation[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4244-4248.

电混凝去除水中锑污染物

  • 基金项目:

    国家自然科学基金项目(51222802,21177089)

    国家“863”高技术研究发展计划项目(2012AA062604,2013AA06A305)

  • 中图分类号: X703

Removal of antimony contaminant in water by electrocoagulation

  • Fund Project:
  • 摘要: 采用电混凝技术对水中锑污染物进行处理,利用阳极电解铁板产生亚铁和三价铁离子,通过絮凝与共沉淀作用去除Sb(Ⅲ)和Sb(V)污染物,并详细探讨了电流密度、溶液初始pH、电解质离子及通入N2对锑去除效率的影响。结果发现,锑初始浓度为1 mg/L时,反应30 min后Sb(Ⅲ)浓度低于5.0 μg/L,Sb(V)浓度为28.1 μg/L,表明Sb(Ⅲ)去除效率明显优于Sb(V)。另外,研究发现,电流密度及初始pH对Sb(Ⅲ)的去除效率影响较小,增大电流密度会提高Sb(V)去除效率,溶液初始pH为4.5时Sb(V)去除效率最高;Mg2+与HCO3-有助于Sb(V)的去除,Ca2+、SiO32-和PO43-对Sb(V)的去除有一定的抑制作用;通入N2会提高Sb(V)的去除率。
  • 加载中
  • [1] Filella M.,Belzile N.,Chen Yuwei.Antimony in the environment:A review focused on natural waters:I.Occurrence.Earth Science Reviews,2002,57(1-2):125-176
    [2] Pletcher D,Weinber N L.The green potential of elcctrochemistry.Part 1:The Fundamentals.Chinese Engineering,1992,99(8):98-103
    [3] 何孟常,万红艳.环境中锑的分布、存在形态及毒性和生物有效性.化学进展,2004,16(1):131-135 He Mengchang,Wan Hongyan.Distribution,speciation,toxicity and bioavailability of antimony in the environment.Progress in Chemistry,2004,16(1):131-135(in Chinese)
    [4] 许光眉.石英砂负载氧化铁(IOCS)吸附去除锑、磷研究.长沙:湖南大学博士学位论文,2006 Xu Guangmei.The study on adsorption removal of antimony and phosphate using iron oxide coated sand.Changsha:Doctor Dissertation of Hunan University,2006
    [5] 李双双 戴友芝,罗春香,等.锑在水中的形态变化及除锑技术的现状.化工环保,2009,29(2):131-134 Li Shuangshuang,Dai Youzhi,Luo Chunxiang,et al.Morphological changes of antimony in water and status quo of antimony-removal technologies.Environmental Protection of Chemical Industry,2009,29(2):131-134(in Chinese)
    [6] Thanabalasingam P.,Pickering W.F.Specific sorption of antimony (Ⅲ) by the hydrous oxides of Mn,Fe,and Al.Water,Air,& Soil Pollution,1990,49(1-2):175-185
    [7] 朱静,吴丰昌.改性粉煤灰在处理锑矿选矿废水中的应用.环境科学学报,2010,30(2):361-367 Zhu Jing,Wu Fengchang.Treatment of wastewater released from antimony ore processing using acidified coal fly ash.Acta Scientiae Circumstantiae,2010,30(2):361-367(in Chinese)
    [8] 张伟宁,李静,刘军.用分步沉积法去除Nb(OH)5/Ta(OH)5中Ti、Sb等金属杂质的工艺研究.宁夏工程技术,2002,1(3):165-167 Zhang Weining,Li Jing,Liu Jun.The study on the removal of the metal impurities Sb,TI etc from the product Nb(OH)5/Ta(OH)5 by fractional-precipitation method.Ningxia Engineering Technology,2002,1(3):165-167(in Chinese)
    [9] 张志,赵永斌,刘如意.微电解-中和沉淀法处理酸性重金属矿山地下水的试验研究.有色金属:选矿部分,2002,(2):44-47 Zhang Zhi,Zhao Yongbin,Liu Ruyi.An experimental study on using micro-electrolysis-neutralization sedimentation process to treat the acidic mine underground water containing heavy metals.Nonferrous Metals (Mineral Processing Section),2002,(2):44-47(in Chinese)
    [10] Ozdemir N.,Soylak M.,Elci L.,et al.Speciation analysis of inorganic Sb(Ⅲ) and Sb(V) ions by using mini column filled with Amberlite XAD-8 resin.Analytica Chimica Acta,2004,505(1):37-41
    [11] 曲久辉,刘会娟.水处理电化学原理与技术.北京:科学出版社,2007
    [12] Zhu Jing,Wu Fengchang,Pan Xiangliang,et al.Removal of antimony from antimony mine flotation wastewater by electrocoagulation with aluminum electrodes.Journal of Environmental Sciences,2011,23(7):1066-1071
    [13] Leuz A.K.,Monch H.,Johnson C.A.Sorption of Sb(Ⅲ) and Sb(V) to goethite:Influence on Sb (Ⅲ) oxidation and mobilization.Environmental Science & Technology,2006,40(23):7277-7282
    [14] Scheinost A.C.,Rossberg A.,Vantelon D.,et al.Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy.Geochimica et Cosmochimica Acta,2006,70(13):3299-3312
    [15] Wijnja H.,Schulthess C.P.Carbonate adsorption mechanism on goethite studied with ATR-FTIR,DRIFT,and proton coadsorption measurements.HYPERLINK"https://www.soils.org/publications/sssaj"Soil Science Society of America Journal,2001,65(2):324-330
    [16] Roberts L.C.,Hug S.J.,Ruettimann T.,et al.Arsenic removal with iron(II) and iron(Ⅲ) in waters with high silicate and phosphate concentrations.Environmental Science & Technology,2004,38(1):307-315
  • 加载中
计量
  • 文章访问数:  2001
  • HTML全文浏览数:  1306
  • PDF下载数:  786
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-07-22
  • 刊出日期:  2014-09-28
张家兴, 王超, 杨波, 张宝锋, 赵旭. 电混凝去除水中锑污染物[J]. 环境工程学报, 2014, 8(10): 4244-4248.
引用本文: 张家兴, 王超, 杨波, 张宝锋, 赵旭. 电混凝去除水中锑污染物[J]. 环境工程学报, 2014, 8(10): 4244-4248.
Zhang Jiaxing, Wang Chao, Yang Bo, Zhang Baofeng, Zhao Xu. Removal of antimony contaminant in water by electrocoagulation[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4244-4248.
Citation: Zhang Jiaxing, Wang Chao, Yang Bo, Zhang Baofeng, Zhao Xu. Removal of antimony contaminant in water by electrocoagulation[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4244-4248.

电混凝去除水中锑污染物

  • 1.  深圳大学化学与化工学院, 深圳 518060
  • 2.  中国科学院饮用水科学与技术重点实验室, 北京 100085
基金项目:

国家自然科学基金项目(51222802,21177089)

国家“863”高技术研究发展计划项目(2012AA062604,2013AA06A305)

摘要: 采用电混凝技术对水中锑污染物进行处理,利用阳极电解铁板产生亚铁和三价铁离子,通过絮凝与共沉淀作用去除Sb(Ⅲ)和Sb(V)污染物,并详细探讨了电流密度、溶液初始pH、电解质离子及通入N2对锑去除效率的影响。结果发现,锑初始浓度为1 mg/L时,反应30 min后Sb(Ⅲ)浓度低于5.0 μg/L,Sb(V)浓度为28.1 μg/L,表明Sb(Ⅲ)去除效率明显优于Sb(V)。另外,研究发现,电流密度及初始pH对Sb(Ⅲ)的去除效率影响较小,增大电流密度会提高Sb(V)去除效率,溶液初始pH为4.5时Sb(V)去除效率最高;Mg2+与HCO3-有助于Sb(V)的去除,Ca2+、SiO32-和PO43-对Sb(V)的去除有一定的抑制作用;通入N2会提高Sb(V)的去除率。

English Abstract

参考文献 (16)

返回顶部

目录

/

返回文章
返回