废水中硝氮和COD浓度对AD-MFC脱氮产电性能的影响

张吉强, 郑平, 何崭飞, 季军远, 张萌, 陈慧, 谢作甫. 废水中硝氮和COD浓度对AD-MFC脱氮产电性能的影响[J]. 环境工程学报, 2014, 8(10): 4508-4514.
引用本文: 张吉强, 郑平, 何崭飞, 季军远, 张萌, 陈慧, 谢作甫. 废水中硝氮和COD浓度对AD-MFC脱氮产电性能的影响[J]. 环境工程学报, 2014, 8(10): 4508-4514.
Zhang Jiqiang, Zheng Ping, He Zhanfei, Ji Junyuan, Zhang Meng, Chen Hui, Xie Zuofu. Influence of nitrate and COD concentrations on nitrogen removal and power production performance of AD-MFC[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4508-4514.
Citation: Zhang Jiqiang, Zheng Ping, He Zhanfei, Ji Junyuan, Zhang Meng, Chen Hui, Xie Zuofu. Influence of nitrate and COD concentrations on nitrogen removal and power production performance of AD-MFC[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4508-4514.

废水中硝氮和COD浓度对AD-MFC脱氮产电性能的影响

  • 基金项目:

    国家自然科学基金资助项目(31070110)

    高等学校博士学科点专项科研基金资助项目(20110101110078)

    浙江省自然科学基金重点项目(Z5110094)

  • 中图分类号: X703.1

Influence of nitrate and COD concentrations on nitrogen removal and power production performance of AD-MFC

  • Fund Project:
  • 摘要: 为探明废水中硝氮和COD浓度对阳极反硝化微生物燃料电池(AD-MFC)工作性能的影响,在批式操作下逐步提高进水浓度考察了AD-MFC反硝化速率和产电性能的变化,并以多个动力学模型对此过程进行拟合。结果表明,废水浓度可通过污染物降解速率来影响产电性能,硝氮浓度从50 mg/L升高至 2 000 mg/L时,反硝化速率和输出电压逐渐达到最大值((1.26±0.01)kg N/(m3·d)和(1 016.75±4.74)mV),但硝氮浓度继续提高会抑制反硝化速率和产电性能。Han-Levenspiel模型可较好地表征AD-MFC的污染物降解和产电动力学行为,以该模型为基础建立了污染物去除速率、输出电压、功率密度与进水浓度之间的关系,反硝化在NO3--N高于4 000 mg/L时才能被完全抑制。AD-MFC适用于处理不同浓度的硝酸盐废水,并对高浓度硝酸盐废水具有较好的耐受性。
  • 加载中
  • [1] 赵正权,徐冬,张浩,等.中国污水处理电耗分析和节能途径.科技导报,2010,28(22):43-47 Zhao Zhengquan,Xu Dong,Zhang Hao,et al.Power consumption of wastewater treatment and the measures of energy saving.Science & Technology Review,2010,28(22):43-47(in Chinese)
    [2] Oh S.T.,Kim J.R.,Premier G.C.,et al.Sustainable wastewater treatment:How might microbial fuel cells contribute.Biotechnology Advances,2010,28(6):871-881
    [3] McCarty P.L.,Bae J.,Kim J.Domestic wastewater treatment as a net energy producer:Can this be achieved?.Environmental Science & Technology,2011,45(17):7100-7106
    [4] Logan B.E.,Rabaey K.Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies.Science,2012,337(6095):686-690
    [5] Puig S.,Serra M.,Coma M.,et al.Simultaneous domestic wastewater treatment and renewable energy production using microbial fuel cells(MFCs).Water Science and Technology,2011,64(4):904-909
    [6] Pant D.,Van Bogaert.G.,Diels L.,et al.A review of the substrates used in microbial fuel cells(MFCs)for sustainable energy production.Bioresource Technology,2010,101(6):1533-1543
    [7] Morris J.M.,Fallgren P.H.,Jin S.,et al.Enhanced denitrification through microbial and steel fuel-cell generated electron transport.Chemical Engineering Journal,2009,153(1):37-42.
    [8] 张吉强,郑平,张萌,等.AD-MFC中甲醇与硝酸盐的偶合过程与作用机制.化工学报,2013,64(9):3404-3411 Zhang Jiqiang,Zheng Ping,Zhang Meng,et al.Coupling process and mechanism of methanol oxidation coupled to nitrate reduction in an anodic denitrification microbial fuel cell(AD-MFC).Journal of Chemical Industry and Engineering (China),2013,64(9):3404-3411(in Chinese)
    [9] Shen J.,He R.,Han W.,et al.Biological denitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR).Journal of Hazardous Materials,2009,172(2-3):595-600
    [10] Tang C.J.,Zheng P.,Chen T.T.,et al.Enhanced nitrogen removal from pharmaceutical wastewater using SBA-ANAMMOX process.Water Research,2011,45(1):201-210
    [11] 国家环境保护总局.水和废水监测分析方法(第4版).北京:中国环境科学出版社,2002
    [12] Foglar L.,Briki F.Wastewater denitrification process-the influence of methanol and kinetic analysis.Process Biochemistry,2003,39(1):95-103
    [13] Clauwaert P.,Rabaey K.,Aelterman P.,et al.Biological denitrification in microbial fuel cells.Environmental Science & Technology,2007,41(9):3354-3360
    [14] McCarthy P.L.,Beck L.,Amant P.Biological denitrification of wastewaters by addition of organic materials//Proceedings of the 24th Industrial Waste Conference.Indiana,1969:1271-1285.
    [15] Logan B.E.,Hamelers B.,Rozendal R.,et al.Microbial fuel cells:Methodology and technology.Environmental Science & Technology,2006,40(17):5181-5192
    [16] Madigan M.T.,Martinko J.M.,Stahl D.,et al.Brock Biology of Microorganisms.San Francisco:Pearson/Benjamin Cummings,2010
  • 加载中
计量
  • 文章访问数:  1546
  • HTML全文浏览数:  879
  • PDF下载数:  760
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-10-16
  • 刊出日期:  2014-09-28
张吉强, 郑平, 何崭飞, 季军远, 张萌, 陈慧, 谢作甫. 废水中硝氮和COD浓度对AD-MFC脱氮产电性能的影响[J]. 环境工程学报, 2014, 8(10): 4508-4514.
引用本文: 张吉强, 郑平, 何崭飞, 季军远, 张萌, 陈慧, 谢作甫. 废水中硝氮和COD浓度对AD-MFC脱氮产电性能的影响[J]. 环境工程学报, 2014, 8(10): 4508-4514.
Zhang Jiqiang, Zheng Ping, He Zhanfei, Ji Junyuan, Zhang Meng, Chen Hui, Xie Zuofu. Influence of nitrate and COD concentrations on nitrogen removal and power production performance of AD-MFC[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4508-4514.
Citation: Zhang Jiqiang, Zheng Ping, He Zhanfei, Ji Junyuan, Zhang Meng, Chen Hui, Xie Zuofu. Influence of nitrate and COD concentrations on nitrogen removal and power production performance of AD-MFC[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4508-4514.

废水中硝氮和COD浓度对AD-MFC脱氮产电性能的影响

  • 1.  浙江大学环境工程系, 杭州 310058
  • 2.  中国海洋大学环境科学与工程学院, 青岛 266100
  • 3.  浙江科技学院, 杭州 310023
基金项目:

国家自然科学基金资助项目(31070110)

高等学校博士学科点专项科研基金资助项目(20110101110078)

浙江省自然科学基金重点项目(Z5110094)

摘要: 为探明废水中硝氮和COD浓度对阳极反硝化微生物燃料电池(AD-MFC)工作性能的影响,在批式操作下逐步提高进水浓度考察了AD-MFC反硝化速率和产电性能的变化,并以多个动力学模型对此过程进行拟合。结果表明,废水浓度可通过污染物降解速率来影响产电性能,硝氮浓度从50 mg/L升高至 2 000 mg/L时,反硝化速率和输出电压逐渐达到最大值((1.26±0.01)kg N/(m3·d)和(1 016.75±4.74)mV),但硝氮浓度继续提高会抑制反硝化速率和产电性能。Han-Levenspiel模型可较好地表征AD-MFC的污染物降解和产电动力学行为,以该模型为基础建立了污染物去除速率、输出电压、功率密度与进水浓度之间的关系,反硝化在NO3--N高于4 000 mg/L时才能被完全抑制。AD-MFC适用于处理不同浓度的硝酸盐废水,并对高浓度硝酸盐废水具有较好的耐受性。

English Abstract

参考文献 (16)

返回顶部

目录

/

返回文章
返回