厌氧流化床微生物燃料电池及其串并联性能

宫本月, 刘新民, 郭庆杰. 厌氧流化床微生物燃料电池及其串并联性能[J]. 环境工程学报, 2014, 8(10): 4527-4532.
引用本文: 宫本月, 刘新民, 郭庆杰. 厌氧流化床微生物燃料电池及其串并联性能[J]. 环境工程学报, 2014, 8(10): 4527-4532.
Gong Benyue, Liu Xinmin, Guo Qingjie. Performances of anaerobic fluidized bed microbial fuel cells and series-parallel connection[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4527-4532.
Citation: Gong Benyue, Liu Xinmin, Guo Qingjie. Performances of anaerobic fluidized bed microbial fuel cells and series-parallel connection[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4527-4532.

厌氧流化床微生物燃料电池及其串并联性能

  • 基金项目:

    山东省科学技术发展计划项目(2010GGX10709)

  • 中图分类号: X703;X382

Performances of anaerobic fluidized bed microbial fuel cells and series-parallel connection

  • Fund Project:
  • 摘要: 在高650 mm、有效容积1 280 mL的液固厌氧流化床单室无膜空气阴极微生物燃料电池(MFC)中,研究了燃料电池串并联产电和有机污水处理性能,同时考察了电极面积、活性炭装填体积、温度等因素对产电性能的影响。结果表明,将燃料电池串联,总电压等于3个单级电池的电压之和,约为2 100 mV,最大功率为0.12 mW,而单级电池最大功率为0.05 mW。并联时,输出电压为800 mV,和单级电池输出电压大体相当,而电流为单级电流的2倍。阳极面积增加1倍,产电量增大了30%;电压随活性炭装填体积的增大而增大;温度为40℃时,燃料电池的产电性能最好。
  • 加载中
  • [1] Reddy M.V.,Srikanth S.,Mohan S.V.,et al.Phosphatase and dehydrogenase activities in anodic chamber of single chamber microbial fuel cell(MFC)at variable substrate loading conditions.Bioelectrochemistry,2010,77(2):125-132
    [2] Cheng S.A.,Liu H.,Logan B.E.Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTEE) in single chamber microbial fuel cells.Environmental Science & Technology,2006,40(25):364-369.
    [3] Cheng S.A.,Logan B.E.Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells.Electrochemistry Communications,2007,9(3):492-496
    [4] Jacobson K.S.,Drew D.M.,He Z.Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode.Bioresource Technology,2011,102(1):367-380
    [5] 梁鹏,范志明,曹效鑫,等.填料型微生物燃料电池产电特性的研究.环境科学,2008,29(2):512-517 Liang Peng,Fan Zhiming,Cao Xiaoxin,et al.Electricity generation using the packing type microbial fuel cells.Environment Science,2008,29(2):512-517(in Chinese)
    [6] Cheng S.A.,Liu H.,Logan B.E.Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing.Environmental Science & Technology,2006,40(7):2426-2432
    [7] Zhuang L.,Yuan Y.,Wang Y.Q.,et al.Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater.Bioresource Technology,2012,123:406-412
    [8] Gurung A.,Oh S.-E.The improvement of power output from stacked microbial fuel cells (MFCs).Energy Sources Part A:Recovery,Utilization,and Environmental Effects,2012,34(17):1569-1576
    [9] Oh S.-E.,Logan B.E.Voltage reversal during microbial fuel cell stack operation.Journal of Power Sources,2007,167(1):11-17
    [10] Logan B.E.Scaling up microbial fuel cells and other bioelectrochemical systems.Applied Microbiology and Biotechnology,2010,85(6):1665-1671
    [11] 赵书菊,郭庆杰,王许云,等.厌氧流化床微生物燃料电池处理废水的产电特性.环境科学学报,2010,30(3):513-518 Zhao Shuju,Guo Qingjie,Wang Xuyun,et al.Electricity generation using an anaerobic fluidized bed microbial fuel cell.Acta Scientiae Circumstantiae,2010,30(3):513-518(in Chinese)
    [12] Gurung A.,Oh S.-E.The performance of serially and parallelly connected microbial fuel cells.Energy Sources Part A,2012,34(17):1591-1598
    [13] Aelterman P.,Rabaey K.,Pham T.H.,et al.Continuous electricity generation at high voltages and currents using stacked microbial fuel cells.Environmental Science & Technology,2006,40(10):3388-3394
    [14] Ratledge C.,Kristiansen B.Basic Biotechnology.Cambridge UK:Cambridge University Press,2006:66-69
    [15] 蒋胜韬,管玉江,白书立,等.微生物燃料电池降解啤酒废水及同步产电特性.中国给水排水,2012,28(13):20-24 Jiang Shengtao,Guan Yujiang,Bai Shuli,et al.Brewery wastewater degradation and electricity generation using microbial fuel cell.China Water & Wastewater,2012,28(13):20-24(in Chinese)
    [16] Gonzalez del Campo A.,Lobato J.,Caizares P.,et al.Short-term effects of temperature and COD in a microbial fuel cell.Applied Energy,2013,101:213-217
    [17] Oh S.E.,Logan B.E.Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells.Applied Microbiology and Biotechnology,2006,70(2):162-169
  • 加载中
计量
  • 文章访问数:  1547
  • HTML全文浏览数:  972
  • PDF下载数:  753
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-12-17
  • 刊出日期:  2014-09-28
宫本月, 刘新民, 郭庆杰. 厌氧流化床微生物燃料电池及其串并联性能[J]. 环境工程学报, 2014, 8(10): 4527-4532.
引用本文: 宫本月, 刘新民, 郭庆杰. 厌氧流化床微生物燃料电池及其串并联性能[J]. 环境工程学报, 2014, 8(10): 4527-4532.
Gong Benyue, Liu Xinmin, Guo Qingjie. Performances of anaerobic fluidized bed microbial fuel cells and series-parallel connection[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4527-4532.
Citation: Gong Benyue, Liu Xinmin, Guo Qingjie. Performances of anaerobic fluidized bed microbial fuel cells and series-parallel connection[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4527-4532.

厌氧流化床微生物燃料电池及其串并联性能

  • 1. 青岛科技大学化工学院, 山东省清洁化工过程重点实验室, 青岛 266042
基金项目:

山东省科学技术发展计划项目(2010GGX10709)

摘要: 在高650 mm、有效容积1 280 mL的液固厌氧流化床单室无膜空气阴极微生物燃料电池(MFC)中,研究了燃料电池串并联产电和有机污水处理性能,同时考察了电极面积、活性炭装填体积、温度等因素对产电性能的影响。结果表明,将燃料电池串联,总电压等于3个单级电池的电压之和,约为2 100 mV,最大功率为0.12 mW,而单级电池最大功率为0.05 mW。并联时,输出电压为800 mV,和单级电池输出电压大体相当,而电流为单级电流的2倍。阳极面积增加1倍,产电量增大了30%;电压随活性炭装填体积的增大而增大;温度为40℃时,燃料电池的产电性能最好。

English Abstract

参考文献 (17)

返回顶部

目录

/

返回文章
返回