基于主成分和粒子群优化支持向量机的水质评价模型
Water quality evaluation mode based on principal component analysis and support vector machine optimized by PSO
-
摘要: 水质的评价是治理水污染必不可少的工作。为了准确、快速地对水质进行评价,利用主成分分析法从水质监测常见的多个物化指标提取出主成分,然后将主成分作为支持向量分类机的输入,利用历史数据进行水质评价训练并用粒子群算法优化参数,构造出水质评价模型,将从物化指标中得出的主成分代入此模型即可得到水质类别。最后,选取水质监测点实测数据进行试验,结果表明,模型的水质评价结果准确且稳定。Abstract: Water quality evaluation is essential to control the water pollution.We extract the main components from several physical and chemical indicators in water quality monitoring by the use of principal component analysis,and then put them into the support vector machine to evaluate the water quality with the help of historical statistics,and optimize the parameters by using the particle swarm algorithm,as a result of which the mode is built.By plugging the principal components from the indicators to the built mode,the categories of the water quality will be obtained.At last,it's proved that the results of the water quality are correct and stability by conducting the experiment on the real samples from the monitoring station.
-
-
[1] 向娜.基于神经网络和人工蜂群算法的水质评价和预测研究.广州:华南理工大学硕士学位论文,2012 Xiang Na.Exploration for water quality assessment and prediction based on neural networks and artificial bee colony algorithm.Guangzhou:Master Dissertation of South China University of Technology,2012(in Chinese) [2] 郑一华.基于支持向量机的水质评价和预测研究.南京:河海大学硕士学位论文,2006 Zheng Yihua.Study of water quality assessment and parameter prediction based on Support Vector Machine.Nanjing:Master Dissertation of Hohai University,2006(in Chinese) [3] 徐红敏.基于支持向量机理论的水环境质量预测与评价方法研究.长春:吉林大学博士学位论文,2007 Xu Hongmin.Study on the prediction and assessment methods of water environment quality based on support vector machines theory.Changchun:Doctor Dissertation of Jilin University,2007(in Chinese) [4] 万金保,何华燕,曾海燕,等.主成分分析法在鄱阳湖水质评价中的应用.南昌大学学报(工科版),2010,32(2):113-117 Wan Jinbao,He Huayan,Zeng Haiyan,et al.Application of principle component analysis in evaluating water quality of Poyang Lake.Journal of Nanchang University (Engineering & Technology),2010,32(2):113-117(in Chinese) [5] 邵信光,杨慧中,陈刚.基于粒子群优化算法的支持向量机参数选择及应用.控制理论与应用,2006,23(5):740-743,748 Shao Xinguang,Yang Huizhong,Chen Gang.Parameters selection and application of support vector machines based on particle swarm optimization algorithm.Control Theory & Applications,2006,23(5):740-743,748(in Chinese) [6] 余锦华,扬维权.多元统计分析与应用.广州:中山大学出版社,2005 [7] 张燕平,张铃.机器学习理论与算法.北京:科学出版社,2012 [8] 雷秀娟.群智能优化算法及其应用.北京:科学出版社,2012 [9] GB3838-2002,地表水环境质量标准 -

计量
- 文章访问数: 1459
- HTML全文浏览数: 813
- PDF下载数: 1188
- 施引文献: 0