纳米Au/TiO2复合物光催化降解亚甲基蓝

倪冰楠, 陆婷, 刘心娟, 孙卓. 纳米Au/TiO2复合物光催化降解亚甲基蓝[J]. 环境工程学报, 2014, 8(12): 5372-5376.
引用本文: 倪冰楠, 陆婷, 刘心娟, 孙卓. 纳米Au/TiO2复合物光催化降解亚甲基蓝[J]. 环境工程学报, 2014, 8(12): 5372-5376.
Ni Bingnan, Lu Ting, Liu Xinjuan, Sun Zhuo. UV photocatalytic reduction of methylene blue by nano Au/TiO2 composites[J]. Chinese Journal of Environmental Engineering, 2014, 8(12): 5372-5376.
Citation: Ni Bingnan, Lu Ting, Liu Xinjuan, Sun Zhuo. UV photocatalytic reduction of methylene blue by nano Au/TiO2 composites[J]. Chinese Journal of Environmental Engineering, 2014, 8(12): 5372-5376.

纳米Au/TiO2复合物光催化降解亚甲基蓝

  • 基金项目:
  • 中图分类号: X703

UV photocatalytic reduction of methylene blue by nano Au/TiO2 composites

  • Fund Project:
  • 摘要: 以纳米金棒为掺杂物,采用溶胶-凝胶法制备了纳米Au/TiO2复合材料,在紫外光下对亚甲基蓝溶液进行光催化降解。结果表明,在紫外光下,Au/TiO2复合物对亚甲基蓝的脱色率最高可达99.6%,是纯TiO2 的1.3倍。这主要归结于掺杂纳米尺寸的Au可增加TiO2对光的吸收以及减少电子-空穴对的复合,由此提高其光催化能力。
  • 加载中
  • [1] Wang H., Li S., Zhang L., et al. Surface decoration of Bi2WO6 superstructures with Bi2O3 nanoparticles:An efficient method to improve visible-light-driven photocatalytic activity. Cryst. Eng. Commun.,2013, 44(15): 9011-9019
    [2] Tamuly C., Hazarika M., Das M. R., et al. Photocatalytic activity of Au nanoparticles synthesized by piper pedicellatum C. DC fruits. J. Nanosci. Nanotechnol. Lett.,2013, 5(7):758-764
    [3] Arbuj S. S., Mulik U. P., Amalnerkar D. P. Synthesis of Ta2O5/TiO2 coupled semiconductor oxide nanocomposites with high photocatalytic activity. Nanosci. Nanotechnol. Lett.,2013, 5(9):968-973
    [4] Shen Q., Zhang W., Hao Z., et al. A study on the synergistic adsorptive and photocatalyticactivities of TiO2-xN<i>x/Beta composite catalysts under visible light irradiation. Chem. Eng. J., 2010, 165(1): 301-309
    [5] Xiong Z., Zhao X. Nitrogen-doped titanate-anatase core-shell nanobelts with exposed{101} anatase facets and enhanced visible light photocatalytic activity. J. Am. Chem. Soc.,2012, 134(13): 5754-5757
    [6] Zhang W., Zou L., Wang L., et al. A novel charge-driven self-assembly method to prepare visible-light sensitive TiO2/activated carbon composites for dissolved organic compound removal. Chem. Eng. J.,2011, 168 (1): 485-492
    [7] Liu X. J., Pan L. K., Lu T. Sol-gel synthesis of Au/N-TiO2 composite for photocatalytic reduction of Cr(VI). RSC Adv.,2012, 9(2): 3823-3827
    [8] Luo Z., Jiang H., Li D., et al. Improved photocatalytic activity and mechanism of Cu2O/N-TiO2 prepared by a two-step method. RSC Adv., 2014, 34(4): 17797-17804
    [9] Li X. Z., Li F. B. Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ. Sci. & Technol.,2001, 35 (11): 2381-2387
    [10] You X., Chen F., Zhang J., et al. A novel deposition precipitation method for preparation of Ag loaded titanium dioxide. Catal. Lett.,2005, 102(3-4): 247-250
    [11] Uddin M. J., Cesano F., Scarano D., et al. Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self-cleaning properties. J. Photochem. Photobiol. A-Chem., 2008, 199(1): 64-72
    [12] Senthilkumaar S., Porkodi K., Gomathi R., et al. Sol-gel derived silver doped nanocrystalline titania catalysed photodegradation of methylene blue from aqueous solution. Dyes and Pigments, 2006, 29(1-2): 22-30
    [13] Xiong Z., Ma J., Ng W. J., et al. Silver-modified mesoporous TiO2 photocatalyst for water purification. Water Res.,2011, 45(5):2095-2103
    [14] Sun L., Zhao D., Song Z., et al. Gold nanoparticles modified ZnO nanorods with improved photocatalytic activity. J. Colloid Interface Sci.,2011, 363(1):175-181
    [15] Pradhan S., Ghosh D., Chen S. Janus nanostructures based on Au-TiO2 heterodimers and their photocatalytic activity in the oxidation of methanol. ACS Appl. Mat. Interfaces,2009, 1(9): 2060-2065
    [16] Armelao L., Barreca D., Bottaro G., et al. Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems. Nanotechnology, 2007, 18 (37): 37-42
    [17] Tada H., Mitsui T., Kiyonaga T., et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat. Mater., 2006, 5(10): 782-786
    [18] Gaspera E. Improved thermal stability of Au nanorods by use of photosensitive layered titanates for gas sensing applications. J. Mater. Chem.,2011, 21(34): 13074-13078
    [19] Anandana S., Pugazhenthirana N., Lee G. J., et al. Photocatalytic degradation of ceftiofur sodium using Au loaded Bi2CuO4 nanoparticles. J. Mole. Cata. A: Chem.,2013, 379(15): 112-116
    [20] Arabatzis I. M., Stergiopoulos T., Andreeva D., et al. Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. J. Catal., 2003, 220 (1), 127-135
    [21] Wu Y., Liu H., Zhang J., et al. Enhanced photocatalytic activity of nitrogen-doped titania by deposited with gold. J. Phys. Chem. C.,2009, 113(33): 14689-14695
    [22] Subramanian V., Wolf E., Prashant V. Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J. Phys. Chem. B.,2001, 105(46): 11439-11446
    [23] Xu J., Ao Y., Fu D., et al. Synthesis of Bi2O3-TiO2 composite film with high-photocatalytic activity under sunlight irradiation. Appl. Surf. Sci., 2008, 255(5): 2365-2369
    [24] Wu J., Wang J., Thomas D. F., et al. Synthesis of F-doped flower-like TiO2 nanostructures with high photoelectrochemical activity. Langmuir, 2008, 24(7): 3503-3509
    [25] Nie C. Y., Liu D., Pan L. K., et al. Enhanced capacitive behavior of carbon aerogels/reduced grapheme oxide composite film for supercapacitors. Solid State Ionics,2013, 247-248: 66-70
    [26] Lu T., Zhang Y. P., Li H. B., et al. Electrochemical behaviors of graphene-ZnO and graphene-SnO2 composite films for supercapacitors. Electrochimica Acta,2010, 55 (13): 4170-4173
    [27] Luo S., Xiao Y., Yang L., et al. Simultaneous detoxification of hexavalent chromium and acid orange 7 by a novel Au/TiO2 heterojunction composite nanotube arrays. Sep. Purif. Technol.,2011, 79(1):85-91
    [28] Tian B. Z., Li C. Z., Gu F., et al. Synergetic effects of nitrogen doping and Au loading on enhancing the visible-light photocatalytic activity of nano-TiO2. Catal. Commun.,2009, 10(6): 925-929
    [29] Yu J., Yue L., Liu S., et al. Hydrothermal preparation and photocatalytic activity of mesoporous Au-TiO2 nanocomposite microspheres. J. Colloid Interface Sci., 2009, 334(1):58-64
  • 加载中
计量
  • 文章访问数:  1500
  • HTML全文浏览数:  996
  • PDF下载数:  888
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-07-08
  • 刊出日期:  2014-12-03
倪冰楠, 陆婷, 刘心娟, 孙卓. 纳米Au/TiO2复合物光催化降解亚甲基蓝[J]. 环境工程学报, 2014, 8(12): 5372-5376.
引用本文: 倪冰楠, 陆婷, 刘心娟, 孙卓. 纳米Au/TiO2复合物光催化降解亚甲基蓝[J]. 环境工程学报, 2014, 8(12): 5372-5376.
Ni Bingnan, Lu Ting, Liu Xinjuan, Sun Zhuo. UV photocatalytic reduction of methylene blue by nano Au/TiO2 composites[J]. Chinese Journal of Environmental Engineering, 2014, 8(12): 5372-5376.
Citation: Ni Bingnan, Lu Ting, Liu Xinjuan, Sun Zhuo. UV photocatalytic reduction of methylene blue by nano Au/TiO2 composites[J]. Chinese Journal of Environmental Engineering, 2014, 8(12): 5372-5376.

纳米Au/TiO2复合物光催化降解亚甲基蓝

  • 1. 华东师范大学纳光电集成和先进装备教育部工程研究中心, 上海 200062
基金项目:

摘要: 以纳米金棒为掺杂物,采用溶胶-凝胶法制备了纳米Au/TiO2复合材料,在紫外光下对亚甲基蓝溶液进行光催化降解。结果表明,在紫外光下,Au/TiO2复合物对亚甲基蓝的脱色率最高可达99.6%,是纯TiO2 的1.3倍。这主要归结于掺杂纳米尺寸的Au可增加TiO2对光的吸收以及减少电子-空穴对的复合,由此提高其光催化能力。

English Abstract

参考文献 (29)

返回顶部

目录

/

返回文章
返回