不干胶废弃物热解焦燃烧特性

付兴民, 徐国欢, 杨迪, 贾晋炜, 鲁明元, 赵洪宇, 舒新前. 不干胶废弃物热解焦燃烧特性[J]. 环境工程学报, 2015, 9(3): 1445-1450. doi: 10.12030/j.cjee.20150375
引用本文: 付兴民, 徐国欢, 杨迪, 贾晋炜, 鲁明元, 赵洪宇, 舒新前. 不干胶废弃物热解焦燃烧特性[J]. 环境工程学报, 2015, 9(3): 1445-1450. doi: 10.12030/j.cjee.20150375
Fu Xingmin, Xu Guohuan, Yang Di, Jia Jinwei, Lu Mingyuan, Zhao Hongyu, Shu Xinqian. Characteristics char combustion of pressure sensitive adhesives wastes[J]. Chinese Journal of Environmental Engineering, 2015, 9(3): 1445-1450. doi: 10.12030/j.cjee.20150375
Citation: Fu Xingmin, Xu Guohuan, Yang Di, Jia Jinwei, Lu Mingyuan, Zhao Hongyu, Shu Xinqian. Characteristics char combustion of pressure sensitive adhesives wastes[J]. Chinese Journal of Environmental Engineering, 2015, 9(3): 1445-1450. doi: 10.12030/j.cjee.20150375

不干胶废弃物热解焦燃烧特性

  • 基金项目:

    山西省科技攻关计划项目(20130313008-1)

Characteristics char combustion of pressure sensitive adhesives wastes

  • Fund Project:
  • 摘要: 采用非等温热重分析和固定床热解实验研究了不干胶废弃物热解焦生成特性及热解焦燃烧特性,并计算了不同升温速率下热解焦的燃烧动力学参数。结果表明,不干胶废弃物热解焦产率随温度升高而逐渐降低,当热解终温在400~700℃时,热解焦产率在34.64%~22.03%之间;空气气氛下热解焦燃烧过程包括3个阶段:挥发分燃烧阶段(390~600℃)、混合燃烧阶段(390~600℃)和残炭燃烧与矿物分解阶段(>650℃);升温速率对热解焦燃烧效果作用明显,升温速率越大,燃烧特性指数越高,燃烧稳定性越好;热解焦燃烧过程可以通过3个一级反应描述,当升温速率为40℃/min时热解焦燃烧各阶段表观活化能明显降低,表明升温速率提高有助于热解焦的燃烧反应活性,更有利于燃烧反应的进行。
  • 加载中
  • [1] 耿学敏. 中国将成全球最大的不干胶标签应用市场. 中国食品报, 2013-04-29(07)
    [2] 赵增立, 李海滨, 吴创之, 等. 蔗渣的热解与燃烧动力学特性研究. 燃料化学学报, 2005, 33(3): 314-321 Zhao Zengli, Li Haibin, Wu Chuangzhi, et al. Study on the kinetic characteristics of bagasse pyrolysis and combustion. Journal of Fuel Chemistry and Technology, 2005, 33(3): 314-321(in Chinese)
    [3] 李理, 阴秀丽, 吴创之, 等. 生物油热解及燃烧特性分析. 太阳能学报, 2008, 29(6): 733-737 Li Li, Yin Xiuli, Wu Chuangzhi, et al. Study on the pyrolysis and combustion characteristics of bio-oil. Acta Energiae Solaris Sinica, 2008, 29(6): 733-737(in Chinese)
    [4] Czech Z., Pelech R. The thermal degradation of acrylic pressure-sensitive adhesives based on butyl acrylate and acrylic acid. Progress in Organic Coatings, 2009, 65(1): 84-87
    [5] Czech Z., Pelech R., Zych K. Thermal decomposition of acrylic pressure-sensitive adhesives. Polish Journal of Chemical Technology, 2009, 11(4): 7-12
    [6] Czech Z., Pelech R. Thermal decomposition of polyurethane pressure-sensitive adhesives dispersions. Progress in Organic Coatings, 2010, 67(1): 72-75
    [7] Nakamura S., Takino M., Daishima S. Analysis of pressure sensitive adhesives by GC/MS and GC/AED with temperature programmable pyrolyzer. Analytical Sciences, 2000, 16(6): 627-632
    [8] 田松峰, 罗伟光, 荆有印, 等. 玉米秸秆燃烧过程及燃烧动力学分析. 太阳能学报, 2008, 29(12): 1569-1572 Tian Songfeng, Luo Weiguang, Jing Youyin, et al. Combustion process and kinetics analysis of cornstalk. Acta Energiae Solaris Sinica, 2008, 29(12): 1569-1572(in Chinese)
    [9] Wang Guangwei, Zhang Jianliang, Shao Jiugang, et al. Characterisation and model fitting kinetic analysis of coal/biomass co-combustion. Thermochimica Acta, 2014, 591: 68-74
    [10] Gai Chao, Zhang Yuanhui, Chen Wanting, et al. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae. Bioresource Technology, 2013, 150: 139-148
    [11] López-González D., Fernandez-Lopez M., Valverde J. L., et al. Kinetic analysis and thermal characterization of the microalgae combustion process by thermal analysis coupled to mass spectrometry. Applied Energy, 2014, 114: 227-237
    [12] Agrawal A., Chakraborty S. A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis. Bioresource Technology, 2013, 128: 72-80
    [13] Janković B., Smi?iklas I. The non-isothermal combustion process of hydrogen peroxide treated animal bones. Kinetic analysis. Thermochimica Acta, 2011, 521(1-2): 130-138
    [14] 施爱平, 张银丽, 叶丽华, 等. 基于非等温热重分析法的醋糟燃烧动力学特性分析. 农业机械学报, 2012, 43(2): 116-120 Shi Aiping, Zhang Yinli, Ye Lihua, et al. Combustion kinetics characteristic analysis on vinegar residue based on non-isothermal thermogravimetric analysis. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(2): 116-120(in Chinese)
    [15] Gong Xuzhong, Guo Zhancheng, Wang Zhi. Variation on anthracite combustion efficiency with CeO2 and Fe2O3 addition by differential thermal analysis (DTA). Energy, 2010, 35(2): 506-511
    [16] Ikram M., Rehman S., Faridoon, et al. Synthesis and distinct urease enzyme inhibitory activities of metal complexes of Schiff-base ligands: Kinetic and thermodynamic parameters evaluation from TG-DTA analysis. Thermochimica Acta, 2013, 555: 72-80
    [17] Tian Yaoqi, Xu Xueming, Xie Zhengjun, et al. Starch retrogradation determined by differential thermal analysis (DTA). Food Hydrocolloids, 2011, 25(6): 1637-1639
    [18] 路霁鸰, 闫德忠, 徐旭常. 用重液分离和岩相分析法研究粉煤的燃烧特性. 燃料化学学报, 1993, 21(3): 304-309 Lu Jiling, Yan Dezhong, Xu Xuchang. The investigation on pulverized coal combustion characteristics with specific gravity classification and petrographical analysis. Journal of Fuel Chemistry and Technology, 1993, 21(3): 304-309(in Chinese)
    [19] Yu L. Y., Li P. S. Thermogravimetric analysis of coal and sludge co-combustion with microwave radiation dehydration. Journal of the Energy Institute, 2014, 87(3): 220-226
    [20] Qian Wei, Xie Qiang, Huang Yuyi, et al. Combustion characteristics of semicokes derived from pyrolysis of low rank bituminous coal. International Journal of Mining Science and Technology, 2012, 22(5): 645-650
    [21] 聂其红, 孙绍增, 李争起, 等. 褐煤混煤燃烧特性的热重分析法研究. 燃烧科学与技术, 2001, 7(1): 72-76 Nie Qihong, Sun Shaozeng, Li Zhengqi, et al. Thermogravimetric analysis on the combustion characteristics of brown coal blends. Journal of Combustion Science and Technology, 2001, 7(1): 72-76(in Chinese)
    [22] Gai Chao, Dong Yuping, Zhang Tonghui. The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Bioresource Technology, 2013, 127: 298-305
    [23] 胡荣祖, 史启祯. 热分析动力学. 北京: 科学出版社, 2001
  • 加载中
计量
  • 文章访问数:  1692
  • HTML全文浏览数:  1071
  • PDF下载数:  22
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-08-27
  • 刊出日期:  2015-03-05
付兴民, 徐国欢, 杨迪, 贾晋炜, 鲁明元, 赵洪宇, 舒新前. 不干胶废弃物热解焦燃烧特性[J]. 环境工程学报, 2015, 9(3): 1445-1450. doi: 10.12030/j.cjee.20150375
引用本文: 付兴民, 徐国欢, 杨迪, 贾晋炜, 鲁明元, 赵洪宇, 舒新前. 不干胶废弃物热解焦燃烧特性[J]. 环境工程学报, 2015, 9(3): 1445-1450. doi: 10.12030/j.cjee.20150375
Fu Xingmin, Xu Guohuan, Yang Di, Jia Jinwei, Lu Mingyuan, Zhao Hongyu, Shu Xinqian. Characteristics char combustion of pressure sensitive adhesives wastes[J]. Chinese Journal of Environmental Engineering, 2015, 9(3): 1445-1450. doi: 10.12030/j.cjee.20150375
Citation: Fu Xingmin, Xu Guohuan, Yang Di, Jia Jinwei, Lu Mingyuan, Zhao Hongyu, Shu Xinqian. Characteristics char combustion of pressure sensitive adhesives wastes[J]. Chinese Journal of Environmental Engineering, 2015, 9(3): 1445-1450. doi: 10.12030/j.cjee.20150375

不干胶废弃物热解焦燃烧特性

  • 1.  中国矿业大学(北京)化学与环境工程学院, 北京 100083
  • 2.  太原市市容环境卫生科学研究所, 太原 030002
基金项目:

山西省科技攻关计划项目(20130313008-1)

摘要: 采用非等温热重分析和固定床热解实验研究了不干胶废弃物热解焦生成特性及热解焦燃烧特性,并计算了不同升温速率下热解焦的燃烧动力学参数。结果表明,不干胶废弃物热解焦产率随温度升高而逐渐降低,当热解终温在400~700℃时,热解焦产率在34.64%~22.03%之间;空气气氛下热解焦燃烧过程包括3个阶段:挥发分燃烧阶段(390~600℃)、混合燃烧阶段(390~600℃)和残炭燃烧与矿物分解阶段(>650℃);升温速率对热解焦燃烧效果作用明显,升温速率越大,燃烧特性指数越高,燃烧稳定性越好;热解焦燃烧过程可以通过3个一级反应描述,当升温速率为40℃/min时热解焦燃烧各阶段表观活化能明显降低,表明升温速率提高有助于热解焦的燃烧反应活性,更有利于燃烧反应的进行。

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回