城市污泥与煤混合热解特性及动力学分析

常风民, 王启宝, 王凯军. 城市污泥与煤混合热解特性及动力学分析[J]. 环境工程学报, 2015, 9(5): 2412-2418. doi: 10.12030/j.cjee.20150562
引用本文: 常风民, 王启宝, 王凯军. 城市污泥与煤混合热解特性及动力学分析[J]. 环境工程学报, 2015, 9(5): 2412-2418. doi: 10.12030/j.cjee.20150562
Chang Fengmin, Wang Qibao, Wang Kaijun. Thermogravimetric characteristics and kinetic analysis of co-pyrolysis of sewage sludge and coal[J]. Chinese Journal of Environmental Engineering, 2015, 9(5): 2412-2418. doi: 10.12030/j.cjee.20150562
Citation: Chang Fengmin, Wang Qibao, Wang Kaijun. Thermogravimetric characteristics and kinetic analysis of co-pyrolysis of sewage sludge and coal[J]. Chinese Journal of Environmental Engineering, 2015, 9(5): 2412-2418. doi: 10.12030/j.cjee.20150562

城市污泥与煤混合热解特性及动力学分析

  • 基金项目:

    国家"水体污染控制与治理"科技重大专项(2012ZX07205-002)

  • 中图分类号: X705

Thermogravimetric characteristics and kinetic analysis of co-pyrolysis of sewage sludge and coal

  • Fund Project:
  • 摘要: 为了污泥与煤混合热解的实验研究及工程化应用提供初步的数据及理论支持,利用热重分析仪讨论了污泥与煤混合热解的主要影响因素(加热速率、热解终温及混合比例)以及动力学参数。结果表明:加热速率对污泥热解影响较小;混合物热解终温与煤的热解终温基本一致;煤在污泥(干基)中的添加比例小于50%有利于挥发分的产出;通过热解特性及动力学参数分析,得出混合物比单一物料更易分解,且两者存在一定的协同效应;建立了污泥与煤不同混合比例在有机质主要热解区间内的经验动力学方程,经具体混合比例验证,经验动力学方程推导出的动力学参数及TG曲线与实际实验结果吻合较好。
  • 加载中
  • [1] 王凯军, 高志永, 张国臣. 投资污泥处理处置前景如何?环境保护, 2011, 39(8): 21-23 Wang Kaijun, Gao Zhiyong, Zhang Guochen. Hou do the foreground of investment of sludge treatment and disposal?. Environmental Protection, 2011, 39(8): 21-23 (in Chinese)
    [2] 杭世珺, 史骏, 关春雨. 全国城镇污水厂污泥处理处置规划的技术路线研究//中国城镇污泥处理处置技术与应用高级研讨会论文集. 中国城镇污泥处理处置技术与应用高级研讨会. 青岛, 2011: 1-7
    [3] Fytili D., Zabaniotou A. Utilization of sewage sludge in EU application of old and new methods:A review. Renewable and Sustainable Energy Reviews, 2008, 12(1): 116-140
    [4] Casajus C., Abrego J., Marias F., et al. Product distribution and kinetic scheme for the fixed bed thermal decomposition of sewage sludge. Chemical Engineering Journal, 2009, 145(3): 412-419
    [5] Vyazovkin S., Burnham A. K., Criado J. M., et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 2011, 520(1-2): 1-19
    [6] Sánchez M. E., Menéndez J. A., Domínguez A., et al. Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge. Biomass and Bioenergy, 2009, 33(6-7): 933-940
    [7] Coats A. W., Redfern J. P. Kinetic Parameters from thermogravimetric data. Nature, 1964, 201(491): 68-69
    [8] 孙立, 张晓东. 生物质热解气化原理与技术. 北京: 化学工业出版社, 2013: 81-86
    [9] Debdoubi A., Amarti A., Colacio E., et al. The effect of heating rate on yields and compositions of oil products from esparto pyrolysis. International Journal of Energy Research, 2006, 30(15): 1243-1250
    [10] 闫云飞, 张力, 李丽仙. 工业废水污泥的热解及升温速率对热解的影响. 环境工程学报, 2012, 6(3): 896-902 Yan Yunfei, Zhang Li, Li Lixian. Pyrolysis and influence of heating rate on industrial sewage sludge. Chinese Journal of Environmental Engineering, 2012, 6(3): 896-902 (in Chinese)
    [11] 赵海培, 侯影飞, 祝威, 等. 热解含油污泥制备吸附剂及热解过程的优化. 环境工程学报, 2012, 6(2): 627-632 Zhao Haipei, Hou Yingfei, Zhu Wei, et al. Process optimization of preparation adsorbent material and pyrolysis for oily sludge. Chinese Journal of Environmental Engineering, 2012, 6(2): 627-632 (in Chinese)
    [12] Scott S. A., Dennis J. S., Davidson J. F., et al. Thermogravimetric measurements of the kinetics of pyrolysis of dried sewage sludge. Fuel, 2006, 85(9): 1248-1253
    [13] Kissin Y. V. Chemical mechanisms of catalytic cracking over solid acidic catalysts: Alkanes and alkenes. Catalysis Reviews: Science and Engineering, 2001, 43(1-2): 85-146
    [14] 张立国, 刘蕾, 张秋云, 等. 市政污水污泥催化热解特性研究. 华南师范大学学报(自然科学版), 2011, (4): 94-97 Zhang Liguo, Liu Lei, Zhang Qiuyun, et al. Study on catalytic pyrolysis characteristics of municipal sewage sludge. Journal of South China Normal University(Natural Science Edition), 2011, (4): 94-97 (in Chinese)
    [15] Seredych M., Strydom C., Bandosz T. J. Effect of fly ash addition on the removal of hydrogen sulfide from biogas and air on sewage sludge-based composite adsorbents. Waste Management, 2008, 28(10): 1983-1992
    [16] Shao Jingai, Yan Rong, Chen Hanping, et al. Catalytic effect of metal oxides on pyrolysis of sewage sludge. Fuel Processing Technology, 2010, 91(9): 1113-1118
    [17] Park D. K., Kim S. D., Lee S. H., et al. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor. Bioresource Technology, 2010, 101(15): 6151-6156
    [18] Zhang Li, Xu Shaoping, Zhao Wei, et al. Co-pyrolysis of biomass and coal in a free fall reactor. Fuel, 2007, 86(3): 353-359
  • 加载中
计量
  • 文章访问数:  2227
  • HTML全文浏览数:  1701
  • PDF下载数:  801
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-05-05
  • 刊出日期:  2015-05-11
常风民, 王启宝, 王凯军. 城市污泥与煤混合热解特性及动力学分析[J]. 环境工程学报, 2015, 9(5): 2412-2418. doi: 10.12030/j.cjee.20150562
引用本文: 常风民, 王启宝, 王凯军. 城市污泥与煤混合热解特性及动力学分析[J]. 环境工程学报, 2015, 9(5): 2412-2418. doi: 10.12030/j.cjee.20150562
Chang Fengmin, Wang Qibao, Wang Kaijun. Thermogravimetric characteristics and kinetic analysis of co-pyrolysis of sewage sludge and coal[J]. Chinese Journal of Environmental Engineering, 2015, 9(5): 2412-2418. doi: 10.12030/j.cjee.20150562
Citation: Chang Fengmin, Wang Qibao, Wang Kaijun. Thermogravimetric characteristics and kinetic analysis of co-pyrolysis of sewage sludge and coal[J]. Chinese Journal of Environmental Engineering, 2015, 9(5): 2412-2418. doi: 10.12030/j.cjee.20150562

城市污泥与煤混合热解特性及动力学分析

  • 1.  中国矿业大学(北京)化学与环境工程学院, 北京 100083
  • 2.  清华大学环境学院环境模拟与污染控制国家重点联合实验室, 北京 100084
基金项目:

国家"水体污染控制与治理"科技重大专项(2012ZX07205-002)

摘要: 为了污泥与煤混合热解的实验研究及工程化应用提供初步的数据及理论支持,利用热重分析仪讨论了污泥与煤混合热解的主要影响因素(加热速率、热解终温及混合比例)以及动力学参数。结果表明:加热速率对污泥热解影响较小;混合物热解终温与煤的热解终温基本一致;煤在污泥(干基)中的添加比例小于50%有利于挥发分的产出;通过热解特性及动力学参数分析,得出混合物比单一物料更易分解,且两者存在一定的协同效应;建立了污泥与煤不同混合比例在有机质主要热解区间内的经验动力学方程,经具体混合比例验证,经验动力学方程推导出的动力学参数及TG曲线与实际实验结果吻合较好。

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回