化学还原固定化土壤地下水中六价铬的研究进展

郑建中, 石美, 李娟, 郭彩阳, 张良. 化学还原固定化土壤地下水中六价铬的研究进展[J]. 环境工程学报, 2015, 9(7): 3077-3085. doi: 10.12030/j.cjee.20150702
引用本文: 郑建中, 石美, 李娟, 郭彩阳, 张良. 化学还原固定化土壤地下水中六价铬的研究进展[J]. 环境工程学报, 2015, 9(7): 3077-3085. doi: 10.12030/j.cjee.20150702
Zheng Jianzhong, Shi Mei, Li Juan, Guo Caiyang, Zhang Liang. Reductive immobilization of hexavalent chromium in contaminated soil and groundwater systems:A review[J]. Chinese Journal of Environmental Engineering, 2015, 9(7): 3077-3085. doi: 10.12030/j.cjee.20150702
Citation: Zheng Jianzhong, Shi Mei, Li Juan, Guo Caiyang, Zhang Liang. Reductive immobilization of hexavalent chromium in contaminated soil and groundwater systems:A review[J]. Chinese Journal of Environmental Engineering, 2015, 9(7): 3077-3085. doi: 10.12030/j.cjee.20150702

化学还原固定化土壤地下水中六价铬的研究进展

  • 基金项目:

    国家自然科学基金资助项目(41473098)

Reductive immobilization of hexavalent chromium in contaminated soil and groundwater systems:A review

  • Fund Project:
  • 摘要: 化学还原法在受铬污染土壤地下水系统修复过程中应用广泛。化学还原固定化方法通过将溶解度大、迁移性强的六价铬(Cr(VI))还原转化为稳定的三价铬(Cr(III))氢氧化物,从而实现铬污染控制与修复的目的。常用的还原剂包括:含铁类还原剂(零价铁、纳米零价铁和亚铁类还原剂)、还原性硫化物(H2S、FeSx、硫代硫酸盐和多硫化合物等)及一些具有还原活性的有机物。本文系统地综述了不同还原剂对六价铬还原固定化的机理、影响因素、修复效果及适用范围;重点对常用还原剂的优缺点进行了比较,并提出了存在的问题和今后的发展方向。
  • 加载中
  • [1] Chiha M.,Samar M.H.,Hamdaoui O.Extraction of chromium (VI) from sulphuric acid aqueous solutions by a liquid surfactant membrane (LSM).Desalination,2006,194(1-3):69-80
    [2] Gheju M.Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems.Water,Air,& Soil Pollut,2011,222(1-4):103-148
    [3] 中华人民共和国国家发展和改革委员会及中华人民共和国环境保护部. 铬渣污染综合整治方案.2005
    [4] 中华人民共和国环境保护部. 铬渣干法解毒处理处置工程技术规范(征求意见稿)编制说明. 2010
    [5] Lan Yeqing,Deng Baolin,Kim C.,et al.Catalysis of elemental sulfur nanoparticles on chromium(VI) reduction by sulfide under anaerobic conditions.Environmental Science & Technology,2005,39(7):2087-2094
    [6] Palmer C.D.,Wittbrodt P.R.Processes affecting the remediation of chromium-contaminated sites.Environmental Health Perspectives,1991,92:25-40
    [7] Cao Jiasheng,Zhang Weixian.Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles.Journal of Hazardous Materials,2006,132(2-3):213-219
    [8] Du Jingjing,Lu Jinsuo,Wu Qiong,et al.Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron.Journal of Hazardous Materials,2012,215-216:152-158
    [9] Buerge I.J.,Hug S.J.Kinetics and pH dependence of chromium(VI) reduction by iron(II).Environmental Science & Technology,1997,31(5):1426-1432
    [10] Bond D.L.,Fendorf S.Kinetics and structural constraints of chromate reduction by green rusts.Environmental Science & Technology,2003,37(12):2750-2757
    [11] Kim C.,Zhou Qunhui,Deng Baolin,et al.Chromium(VI) reduction by hydrogen sulfide in aqueous media:Stoichiometry and kinetics.Environmental Science & Technology,2001,35(11):2219-2225
    [12] Hua Bin,Deng Baolin.Influences of water vapor on Cr(VI) reduction by gaseous hydrogen sulfide.Environmental Science & Technology,2003,37(20):4771-4777
    [13] Patterson R.R.,Fendorf S.,Fendorf M.Reduction of hexavalent chromium by amorphous iron sulfide.Environmental Science & Technology,1997,31(7):2039-2044
    [14] Messer A.,Storch P.,Palmer D.In-situ remediation of a chromium-contaminated site using calcium polysulfide.Southwest Hydrology,2003:7-8
    [15] James B.R.,Bartlett R.J.Behavior of chromium in soils:VII.Adsorption and reduction of hexavalent forms.Journal of Environmental Quality,1983,12(2):177-181
    [16] Wilkin R.T.,Su Chunming,Ford R.G.,et al.Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier.Environmental Science & Technology,2005,39(12):4599-4605
    [17] Noubactep C.Characterizing the reactivity of metallic iron in Fe0/EDTA/H2O systems with column experiments.Chemical Engineering Journal,2010,162(2):656-661
    [18] Blowes D.W.,Ptacek C.J.Geochemical remediation of groundwater by permeable reactive walls:Removal of chromate by reaction with iron-bearing solids//Proceedings of the the Subsurface Restoration Conference.Dallas,Texas,1992
    [19] Blowes D.W.,Ptacek C.J.,Jambor J.L.In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls:Laboratory studies.Environmental Science & Technology,1997,31(12):3348-3357
    [20] Wang Qian,Qian Huijing,Yang Yueping,et al.Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles.Journal of Contaminant Hydrology,2010,114(1-4):35-42
    [21] Alidokht L.,Khataee A.R.,Reyhanitabar A.,et al.Reductive removal of Cr(VI) by starch-stabilized Fe0 nanoparticles in aqueous solution.Desalination,2011,270(1-3):105-110
    [22] Bowers A.R.,Ortiz C.A.,Cardozo R.J.Iron process for treatment of Cr(VI) wastewaters//Proceedings of the the 41st Industrial Waste Conference.Purdue University,West Lafayette,1986
    [23] Chen S.S.,Cheng C.Y.,Li C.W.,et al.Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process.Journal of Hazardous Materials,2007,142(1-2):362-367
    [24] Dutta R.,Mohammad S.S.,Chakrabarti S.,et al.Reduction of hexavalent chromium in aqueous medium with zerovalent iron.Water Environment Research,2010,82(2):138-146
    [25] Gould J.P.The kinetics of hexavalent chromium reduction by metallic iron.Water Research,1982,16(6):871-877
    [26] Liu Tongzhou,Tsang D.C.W.,Lo I.M.C.Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid:Iron dissolution and humic acid adsorption.Environmental Science & Technology,2008,42(6):2092-2098
    [27] El-Shazly A.H.,Mubarak A.A.,Konsowa A.H.Hexavalent chromium reduction using a fixed bed of scrap bearing iron spheres.Desalination,2005,185(1-3):307-316
    [28] Lee T.,Lim H.,Lee Y.,et al.Use of waste iron metal for removal of Cr(VI) from water.Chemosphere,2003,53(5):479-485
    [29] Ponder S. M., Darab J. G., Mallouk T. E. Remediation of Cr (VI) and Pb (II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology, 2000, 34(12): 2564-2569
    [30] Özer A.,Altundoğan H.S.,Erdem M.,et al.A study on the Cr(VI) removal from aqueous solutions by steel wool.Environtal Pollution,1997,97(1-2):107-112
    [31] 王吟,赵建夫,王学江,等.零价铁修复铬污染水体研究进展.安徽农业科学,2010,38(6):3117-3119,3134 Wang Yin,Zhao Jianfu,Wang Xuejiang,et al.Research progress on the remediation of chromium-polluted water with zero valent iron.Journal of Anhui Agriculture Science,2010,38(6):3117-3119,3134(in Chinese)
    [32] Zhou H.,He Y.,Lan Y.,et al.Influence of complex reagents on removal of chromium (VI) by zero-valent iron.Chemosphere,2008,72(6):870-874
    [33] Gheju M.,Iovi A.Kinetics of hexavalent chromium reduction by scrap iron.Journal of Hazardous Materials,2006,135(1-3):66-73
    [34] Yang J.E.,Kim J.S.,Ok Y.S.,et al.Capacity of Cr (VI) reduction in an aqueous solution using different sources of zerovalent irons.Korean Journal of Chemical Engineering,2006,23(6):935-939
    [35] Lo I.,Lam C.S.,Lai K.C.Hardness and carbonate effects on the reactivity of zero-valent iron for Cr (VI) removal.Water Research,2006,40(3):595-605
    [36] Müller N.C.,Nowack B.Nano zero valent iron-the solution for water and soil remediation.Report of the Observatory NANO,2010:1-34
    [37] Lee H.,Chun B.,Kim W.,et al.Zero valent iron and clay mixtures for removal of trichloroethylene,chromium (VI),and nitrate.Environmental Technology,2006,27(3):299-306
    [38] Karn B.,Kuiken T.,Otto M.Nanotechnology and in situ remediation:A review of the benefits and potential risks.Environmental Health Perspectives,2009,117(12):1823-1831
    [39] Quinn J.,Geiger C.,Clausen C.,et al.Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron.Environmental Science & Technology,2005,39(5):1309-1318
    [40] Hoch L.B.,Mack E.J.,Hydutsky B.W.,et al.Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium.Environmental Science & Technology,2008,42(7):2600-2605
    [41] EPA.In situ treatment of soil and groundwater contaminated with chromium.Technical Resource Guide.Washington,DC.U.S.Environmental Protection Agency,2000
    [42] Noubactep C.,Caré S.On nanoscale metallic iron for groundwater remediation.Journal of Hazardous Materials,2010,182(1-3):923-927
    [43] Comba S.,Sethi R.Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum.Water Research,2009,43(15):3717-3726
    [44] Wang Yu,Fang Zhanqiang,Kang Yuan,et al.Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI.Journal of Hazardous Materials,2014,275:230-237
    [45] Lin Y.H.,Tseng H.H.,Wey M.Y.,et al.Characteristics,morphology,and stabilization mechanism of PAA250K-stabilized bimetal nanoparticles.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,349(1-3):137-144
    [46] Reyhanitabar A., Alidokht L., Khataee A. R., et al. Application of stabilized Fe0 nanoparticles for remediation of Cr(VI)-spiked soil. European Journal of Soil Science, 2012, 63(5): 724-732
    [47] Esfahani A.R.,Hojati S.,Azimi A.,et al.Reductive removal of hexavalent chromium from aqueous solution using sepiolite-stabilized zero-valent iron nanoparticles:Process optimization and kinetic studies.Korean Journal of Chemical Engineering,2014,31(4):630-638
    [48] Grieger K.D.,Fjordboge A.,Hartmann N.B.,et al.Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation:Risk mitigation or trade-off.Journal of Contaminant Hydrology,2010,118(3-4):165-183
    [49] Eary L E, Rai D. Kinetics of chromate reduction by ferrous-ions derived from hematite and biotite at 25℃. American Journal of Science, 1989, 289(2): 180-213
    [50] Sass B.M.,Rai D.Solubility of amorphous chromium(III)-iron(III) hydroxide solid-solutions.Inorganic Chemistry,1987,26(14):2228-2232
    [51] Masscheleyn P.H.,Pardue J.H.,Delaune R.D.,et al.Chromium redox chemistry in a lower mississippi valley bottomland hardwood wetland.Environmental Science & Technology,1992,26(6):1217-1226
    [52] James B.R.Hexavalent chromium solubility and reduction in alkaline soils enriched with chromite ore processing residue.Journal Environmental Quality,1994,23(2):227-233
    [53] Kieber R.J.,Helz G.R.Indirect photoreduction of aqueous chromium(VI).Environmental Science & Technology,1992,26(2):307-312
    [54] Johnson C.A.,Sigg L.,Lindauer U.The chromium cycle in a seasonally anoxic lake.Limnology and Oceanography,1992,37(2):315-321
    [55] Adamczyk M.,Johnson D.D.,Reddy R.E.Bone collagen cross-links:A convergent synthesis of (+)-deoxypyrrololine.The Journal of Organic Chemistry,2001,66(1):11-19
    [56] Hering J.G.,Stumm W.Oxidative and reductive dissolution of minerals.Reviews in Mineralogy and Geochemistry,1990,23:427-465
    [57] Eary L.E.,Rai D.Chromate reduction by subsurface soils under acidic conditions.Soil Science Society of American Journal,1991,55(3):676-683
    [58] Eary L.E.,Rai D.Kinetics of chromate reduction by ferrous ions derived from hematite and biotite at 25℃.American Journal of Science,1989,289(2):180-213
    [59] Weng C.H.,Huang C.P.,Allen H.E.,et al.Chemical interactions between Cr(VI) and hydrous concrete particles.Environmental Science & Technology,1996,30(2):371-376
    [60] Ludwig R.D.,Su Chunming,Lee T.R.,et al.In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulfate and sodium dithionite:A field investigation.Environmental Science & Technology,2007,41(15):5299-5305
    [61] Fendorf S.E.,Li G.C.Kinetics of chromate reduction by ferrous iron.Environmental Science & Technology,1996,30(5):1614-1617
    [62] Jeon, B. H., Dempsey, B. A., Burgos, W. D., et al. Reactions of ferrous iron with hematite. Colloids Surf.A,2001, 191:41-55
    [63] Thornton E C, Amonette J E. Gas treatment of Cr (VI)-contaminated sediment samples from the North 60’s pits of the chemical waste landfill. Pacific Northwest Lab., Richland, WA (United States). Funding organisation: USDOE Office of Environmental Restoration and Waste Management, Washington, D.C., 1997
    [64] Thornton E.C.,Amonette J.E.Hydrogen sulfide gas treatment of Cr(VI)-contaminated sediment samples from a plating-waste disposal site-Implications for in-situ remediation.Environmental Science & Technology,1999,33(22):4096-4101
    [65] Hashim M.A.,Mukhopadhyay S.,Sahu J.N.,et al.Remediation technologies for heavy metal contaminated groundwater.Journal of Environmental Management,2011,92(10):2355-2388
    [66] USDOE.Subsurface Contaminants Focus Area Report,(08/96) DOE/EM-0296//USDOE.Springfield,VA.Office of Science and Technology,1996
    [67] Cantrell K.J.,Yabusaki S.B.,Engelhard M.H.,et al.Oxidation of H2S by iron oxides in unsaturated conditions.Environmental Science & Technology,2003,37(10):2192-2199
    [68] Pettine M.,Millero F.J.,Passino R.Reduction of chromium (VI) with hydrogen sulfide in NaCl media.Marine Chemistry,1994,46(4):335-344
    [69] Demoisson F.,Mullet M.,Humbert B.Investigation of pyrite oxidation by hexavalent chromium:Solution species and surface chemistry.Journal of Colloid and Interface Science,2007,316(2):531-540
    [70] Demoisson F.,Mullet M.,Humbert B.Pyrite oxidation by hexavalent chromium:Investigation of the chemical processes by monitoring of aqueous metal species.Environmental Science & Technology,2005,39(22):8747-8752
    [71] Zouboulis A.,Kydros K.,Matis K.Removal of hexavalent chromium anions from solutions by pyrite fines.Water Research,1995,29(7):1755-1760
    [72] Mullet M.,Boursiquot S.,Ehrhardt J.J.Removal of hexavalent chromium from solutions by mackinawite,tetragonal FeS.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,244(1-3):77-85
    [73] Taylor R.W.,Shen S.Y.,Bleam W.F.,et al.Chromate removal by dithionite-reduced clays:Evidence from direct X-ray adsorption near edge spectroscopy (XANES) of chromate reduction at clay surfaces.Clays and Clay Minerals,2000,48(6):648-654
    [74] Amonette J.E.,Szecsody J.E.,Schaef H.T.,et al.Abiotic reduction of aquifer materials by dithionite-A promising in-situ remediation technology.Columbus:Battelle Press,1994
    [75] Fruchter J. S., Cole C. R., Williams M. D., et al. Creation of a subsurface permeable treatment zone for aqueous chromate contamination using in situ redox manipulation. Ground Water Monitoring & Remediation, 2000, 20(2): 66-77
    [76] Sevougian S. D., Steefel C. I., Yabusaki S. B. Enhancing the design of in-situ chemical barriers with multicomponent reactive transport modeling. Columbus: Battelle Press, 1994
    [77] Chrysochoou M.,Ferreira D.R.,Johnston C.P.Calcium polysulfide treatment of Cr(VI)-contaminated soil.Journal of Hazardous Materials,2010,179(1-3):650-657
    [78] Storch P.,Messer A.,Palmer D.,et al.Pilot test for in situ geochemical fixation of chromium(VI) using calcium polysulfide//Proceedings of the the Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds.Monterey,CA:,Battelle Press,2002
    [79] Guertin J.,Jacobs J.,Avakian C.Cr(VI) handbook,Written by Independent Environmental Technical Evaluation Group.IETEG,CRC Press,2005
    [80] Graham M.C.,Farmer J.G.,Anderson P.,et al.Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue.Science of the Total Environment,2006,364(1-3):32-44
    [81] Tinjum J.M.,Benson C.H.,Edil T.B.Treatment of Cr(VI) in COPR using ferrous sulfate-sulfuric acid or cationic polysulfides.Journal of Geotechnical and Geoenvironmental Engineering,2008,134(12):1791-1803
    [82] Wittbrodt P.R.,Palmer C.D.Reduction of Cr(VI) in the presence of excess soil fulvic acid.Environmental Science & Technology,1995,29(1):255-263
    [83] Xu Xiangrong,Li Huabin,Li Xiaoyan,et al.Reduction of hexavalent chromium by ascorbic acid in aqueous solutions.Chemosphere,2004,57(7):609-613
    [84] Elovitz M.S.,Fish W.Redox interactions of Cr(VI) and substituted phenols:Products and mechanism.Environmental Science & Technology,1995,29(8):1933-1943
    [85] Kabir Ud D.,Hartani K.,Khan Z.One-step three-electron oxidation of tartaric and glyoxylic acids by chromium(VI) in the absence and presence of manganese(II).Transit Metal Chem,2002,27(6):617-624
    [86] Hug S.J.,Laubscher H.U.,James B.R.Iron(III) catalyzed photochemical reduction of chromium(VI) by oxalate and citrate in aqueous solutions.Environmental Science & Technology,1997,31(1):160-170
    [87] Wei Shouqiang,Liu Jinqiu,Liu Long,et al.Photocatalytic effect of iron corrosion products on reduction of hexavalent chromium by organic acids.Journal of the Taiwan Institute of Chemical Engineers,2014,45(5):2659-2963
    [88] Deng Baolin,Stone A.T.Surface-catalyzed chromium(VI) reduction:Reactivity comparisons of different organic reductants and different oxide surfaces.Environmental Science & Technology,1996,30(8):2484-2494
    [89] Puzon G.J.,Roberts A.G.,Kramer D.M.,et al.Formation of soluble organo-chromium(III) complexes after chromate reduction in the presence of cellular organics.Environmental Science & Technology,2005,39(8):2811-2817
    [90] Carbonaro R.F.,Stone A.T.Speciation of chromium(III) and cobalt(III) (Amino)carboxylate complexes using capillary electrophoresis.Analytical Chemistry,2005,77(1):155-164
    [91] Milacic R.,Stupar J.Fractionation and oxidation of chromium in tannery waste-and sewage sludge-amended soils.Environmental Science & Technology,1995,29(2):506-514
    [92] Schroeder D.C.,Lee G.F.Potential transformations of chromium in natural waters.Water,Air,and Soil Pollut,1975,4(3-4):355-365
    [93] Eary L.E.,Rai D.Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide.Environmental Science & Technology,1987,21(12):1187-1193
    [94] Fendorf S.E.,Zasoski R.J.Chromium(III) oxidation by δ-manganese oxide MnO2.1.Characterization.Environmental Science & Technology,1992,26(1):79-85
  • 加载中
计量
  • 文章访问数:  3596
  • HTML全文浏览数:  2686
  • PDF下载数:  1281
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-03-24
  • 刊出日期:  2015-07-02
郑建中, 石美, 李娟, 郭彩阳, 张良. 化学还原固定化土壤地下水中六价铬的研究进展[J]. 环境工程学报, 2015, 9(7): 3077-3085. doi: 10.12030/j.cjee.20150702
引用本文: 郑建中, 石美, 李娟, 郭彩阳, 张良. 化学还原固定化土壤地下水中六价铬的研究进展[J]. 环境工程学报, 2015, 9(7): 3077-3085. doi: 10.12030/j.cjee.20150702
Zheng Jianzhong, Shi Mei, Li Juan, Guo Caiyang, Zhang Liang. Reductive immobilization of hexavalent chromium in contaminated soil and groundwater systems:A review[J]. Chinese Journal of Environmental Engineering, 2015, 9(7): 3077-3085. doi: 10.12030/j.cjee.20150702
Citation: Zheng Jianzhong, Shi Mei, Li Juan, Guo Caiyang, Zhang Liang. Reductive immobilization of hexavalent chromium in contaminated soil and groundwater systems:A review[J]. Chinese Journal of Environmental Engineering, 2015, 9(7): 3077-3085. doi: 10.12030/j.cjee.20150702

化学还原固定化土壤地下水中六价铬的研究进展

  • 1. 中国科学院大学资源与环境学院, 北京 100049
基金项目:

国家自然科学基金资助项目(41473098)

摘要: 化学还原法在受铬污染土壤地下水系统修复过程中应用广泛。化学还原固定化方法通过将溶解度大、迁移性强的六价铬(Cr(VI))还原转化为稳定的三价铬(Cr(III))氢氧化物,从而实现铬污染控制与修复的目的。常用的还原剂包括:含铁类还原剂(零价铁、纳米零价铁和亚铁类还原剂)、还原性硫化物(H2S、FeSx、硫代硫酸盐和多硫化合物等)及一些具有还原活性的有机物。本文系统地综述了不同还原剂对六价铬还原固定化的机理、影响因素、修复效果及适用范围;重点对常用还原剂的优缺点进行了比较,并提出了存在的问题和今后的发展方向。

English Abstract

参考文献 (94)

返回顶部

目录

/

返回文章
返回