海藻酸钠微胶囊负载纳米铁吸附水中的As(Ⅴ)

韩东, 鲁婷婷, 叶长城, 罗斯. 海藻酸钠微胶囊负载纳米铁吸附水中的As(Ⅴ)[J]. 环境工程学报, 2015, 9(8): 3795-3802. doi: 10.12030/j.cjee.20150834
引用本文: 韩东, 鲁婷婷, 叶长城, 罗斯. 海藻酸钠微胶囊负载纳米铁吸附水中的As(Ⅴ)[J]. 环境工程学报, 2015, 9(8): 3795-3802. doi: 10.12030/j.cjee.20150834
Han Dong, Lu Tingting, Ye Changcheng, Luo Si. Removal of As(V) from aqueous solution by nanoscale zero-valent iron immobilized in alginate microcapsules[J]. Chinese Journal of Environmental Engineering, 2015, 9(8): 3795-3802. doi: 10.12030/j.cjee.20150834
Citation: Han Dong, Lu Tingting, Ye Changcheng, Luo Si. Removal of As(V) from aqueous solution by nanoscale zero-valent iron immobilized in alginate microcapsules[J]. Chinese Journal of Environmental Engineering, 2015, 9(8): 3795-3802. doi: 10.12030/j.cjee.20150834

海藻酸钠微胶囊负载纳米铁吸附水中的As(Ⅴ)

  • 基金项目:

    湖南省自然科学基金资助项目(13JJ4069)

    湖南农业大学引进人才基金项目(12YJ12)

  • 中图分类号: X703.1

Removal of As(V) from aqueous solution by nanoscale zero-valent iron immobilized in alginate microcapsules

  • Fund Project:
  • 摘要: 利用本实验所制备的海藻酸钠微胶囊负载纳米零价铁材料(M-NZVI)对水中不同浓度的As(V)进行了吸附去除研究,并比较了不同材料的吸附等温曲线。实验结果表明,2 g/L M-NZVI在pH=6.5±0.1,常温常压条件下对5 mg/L的As(V)的吸附去除率为90.35%,吸附速率较快,在30 min即可达到吸附平衡。通过M-NZVI、Ca-ALG和NZVI的热力学对比实验可知,M-NZVI表现出优越的吸附性能。溶液吸附剂添加量、初始pH值、离子浓度等因素对M-NZVI吸附水中砷离子的效率有一定影响:在其他条件不变的情况下,As(V)的去除率随着添加量的增加而逐渐增大;M-NZVI对As(V)的最佳吸附效果在pH=6~7范围之间;溶液中高浓度NaCl能对M-NZVI的吸附性产生较强的干扰。同时,对于As(V) ≤ 5 mg/L的溶液,M-NZVI可以不做任何处理多次利用3~4次。这些结果显示,M-NZVI是一种用于原位修复重金属污染水体的潜在理想材料。
  • 加载中
  • [1] Welch A. H. Lico M. S. Hughes J. L. Arsenic in ground water of the western United States. Groundwater, 1988, 26(3): 333-347
    [2] Wilkie J. A. Hering J. G. Rapid oxidation of geothermal arsenic(III) in streamwaters of the eastern Sierra Nevada. Environmental Science & Technology, 1998, 32(5): 657-662
    [3] 赵素莲, 王玲芬, 梁京辉. 饮用水中砷的危害及除砷措施. 现代预防医学, 2002, 29(5): 651-652 Zhao Sulian, Wang Lingfen, Liang Jinghui. The harm of arsenic in drinking water and removal measures. Modern Preventive Medicine, 2002, 29(5): 651-652 (in Chinese)
    [4] 黄园英, 秦臻, 刘菲. 纳米铁去除饮用水中As(Ⅲ)和As(Ⅴ). 岩矿测试, 2009, 28(6): 529-534 Huang Yuanying, Qin Zhen, Liu Fei. Removal of As(Ⅲ) and As(Ⅴ) from drinking water by nanoscale zero-valent iron. Rock and Mineral Analysis, 2009, 28(6): 529-534 (in Chinese)
    [5] 孙贵范. 我国地方性砷中毒面临问题和防治策略探讨. 中国地方病学杂志, 2001, 20(1): 325 Sun Guifan. Endemic arsenic poisoning in China is facing a problem and control strategy. Chinese Journal of Endemiology, 2001, 20(1): 325 (in Chinese)
    [6] Lin T. F., Wu Junkun. Adsorption of arsenite and arsenate within activated alumina grains: Equilibrium and kinetics. Water Research, 2001, 35(8): 2049-2057
    [7] Borho M., Wilderer P. Optimized removal of arsenate(III) by adaptation of oxidation and precipitation processes to the filtration step. Water Science and Technology, 1996, 34(9): 25-31
    [8] Kim J., Benjamin M. M. Modeling a novel ion exchange process for arsenic and nitrate removal. Water Research, 2004, 38(8): 2053-2062
    [9] Sato Y., Kang M., Kamei T., et al. Performance of nanofiltration for arsenic removal. Water Research, 2002, 36(13): 3371-3377
    [10] Zouboulis A. I., Katsoyiannis I. A. Recent advances in the bioremediation of arsenic-contaminated groundwaters. Environment International, 2005, 31(2): 213-219
    [11] Ning R. Y. Arsenic removal by reverse osmosis. Desalination, 2002, 143(3): 237-241
    [12] Wickramasinghe S. R., Han Binbing, Zimbron J., et al. Arsenic removal by coagulation and filtration: Comparison of groundwaters from the United States and Bangladesh. Desalination, 2004, 169(3): 231-244
    [13] Huang C. P., Fu P. L. K. Treatment of arsenic(V)-containing water by the activated carbon process. Water Pollution Control Federation, 1984, 56(3): 233-242
    [14] Diamadopoulos E., Ioanidis S., Sakellaropoulos G. P. As (V) removal from aqueous solutions by fly ash. Water Research, 1993, 27(12): 1773-1777
    [15] Pokhrel D., Viraraghavan T. Arsenic removal from an aqueous solution by a modified fungal biomass. Water Research, 2006, 40(3): 549-552
    [16] Sylvester P., Westerhoff P., M?ller T., et al. A hybrid sorbent utilizing nanoparticles of hydrous iron oxide for arsenic removal from drinking water. Environmental Engineering Science, 2007, 24(1): 104-112
    [17] Guo Huaming, Stüben D., Berner Z. Adsorption of arsenic(Ⅲ) and arsenic(Ⅴ) from groundwater using natural siderite as the adsorbent. Journal of Colloid and Interface Science, 2007, 315(1): 47-53
    [18] Giménez J., Martínez M., de Pablo J. Arsenic sorption onto natural hematite, magnetite, and goethite. Journal of Hazardous Materials, 2007, 141(3): 575-580
    [19] Manning B. A., Hunt M. L., Amrhein C., et al. Arsenic(Ⅲ) and arsenic(Ⅴ) reactions with zerovalent iron corrosion products. Environmental Science & Technology, 2002, 36(24): 5455-5461
    [20] Kim Y. H., Caraway E. R. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environmental Science & Technology, 2000, 34(10): 2014-2017
    [21] Zhang Qiaoli, Lin Y. C., Chen X., et al. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water. Journal of Hazardous Materials, 2007, 148(3): 671-678
    [22] 朱慧杰, 贾永锋, 姚淑华, 等. 负载型纳米铁吸附剂去除饮用水中As(Ⅴ)的研究. 环境科学, 2009, 30(12): 3562-3567 Zhu Huijie, Jia Yongfeng, Yao Shuhua, et al. Removal of arsenate from drinking water by activated carbon supported nano zero-valent iron. Environmental Science, 2009, 30(12): 3562-3567 (in Chinese)
    [23] 李勇超, 李铁龙, 王学, 等. 纳米Fe@SiO2一步合成及其对Cr(Ⅵ)的去除. 物理化学学报, 2011, 27(11): 2711-2718 Li Yongchao, Li Tielong, Wang Xue, et al. One-step synthesis of Fe@SiO2 and its application in Cr(Ⅵ) removal. Acta Physico-Chimica Sinica, 2011, 27(11): 2711-2718 (in Chinese)
    [24] 耿兵, 李铁龙, 金朝晖, 等. 壳聚糖稳定纳米铁的制备及其对地表水中Cr(Ⅵ) 的去除性能. 高等学校化学学报, 2009, 30(4): 796-799 Geng Bing, Li Tielong, Jin Zhaohui, et al. Synthesis of chitosan-stabilized nanoscale zero-valent iron for removal of hexavalent chromium from surface water. Chemical Journal of Chinese Universities, 2009, 30(4): 796-799 (in Chinese)
    [25] 刘长光,赵林,丁舒,等.CMC稳定的Ni/Fe双金属催化体系的制备及对PCB77原位脱氯降解.化学工业与工程,2012,29(5):12-17 Liu Changguang,Zhao Lin,Ding Shu,et al.Synthesis of CMC-Stabilized Fe/Ni bimetallic nanoparticles for in situ reductive dechlorination of PCB77.Chemical Industry and Engineering,2012,29(5):12-17(in Chinese)
    [26] Kanel S. R., Grenèche J. M., Choi H. Arsenic(Ⅴ) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environmental Science & Technology, 2006, 40(6): 2045-2050
    [27] 张萃, 李亚峰, 田西满. 活性炭吸附处理含砷废水的研究. 工业安全与环保学报, 2009, 35(12): 6-7 Zhang Cui, Li Yafeng, Tian Ximan. Research on the treatment for wastewater containing arsenic by absorption on activated carbon. Industrial Safety and Environmental Protection, 2009, 35(12): 6-7 (in Chinese)
    [28] Bezbaruah N., Krajangpan S., Chisholm B. J., et al. Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. Journal of Hazardous Materials, 2009, 166(2): 1339-1343
    [29] Xu Di, Tan Xiaoli, Chen Changlun, et al. Removal of Pb(Ⅱ) from aqueous solution by oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials, 2008, 154(1-3): 407-416
  • 加载中
计量
  • 文章访问数:  2286
  • HTML全文浏览数:  1737
  • PDF下载数:  473
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-09-18
  • 刊出日期:  2015-08-13
韩东, 鲁婷婷, 叶长城, 罗斯. 海藻酸钠微胶囊负载纳米铁吸附水中的As(Ⅴ)[J]. 环境工程学报, 2015, 9(8): 3795-3802. doi: 10.12030/j.cjee.20150834
引用本文: 韩东, 鲁婷婷, 叶长城, 罗斯. 海藻酸钠微胶囊负载纳米铁吸附水中的As(Ⅴ)[J]. 环境工程学报, 2015, 9(8): 3795-3802. doi: 10.12030/j.cjee.20150834
Han Dong, Lu Tingting, Ye Changcheng, Luo Si. Removal of As(V) from aqueous solution by nanoscale zero-valent iron immobilized in alginate microcapsules[J]. Chinese Journal of Environmental Engineering, 2015, 9(8): 3795-3802. doi: 10.12030/j.cjee.20150834
Citation: Han Dong, Lu Tingting, Ye Changcheng, Luo Si. Removal of As(V) from aqueous solution by nanoscale zero-valent iron immobilized in alginate microcapsules[J]. Chinese Journal of Environmental Engineering, 2015, 9(8): 3795-3802. doi: 10.12030/j.cjee.20150834

海藻酸钠微胶囊负载纳米铁吸附水中的As(Ⅴ)

  • 1. 湖南农业大学资源环境学院, 长沙 410128
基金项目:

湖南省自然科学基金资助项目(13JJ4069)

湖南农业大学引进人才基金项目(12YJ12)

摘要: 利用本实验所制备的海藻酸钠微胶囊负载纳米零价铁材料(M-NZVI)对水中不同浓度的As(V)进行了吸附去除研究,并比较了不同材料的吸附等温曲线。实验结果表明,2 g/L M-NZVI在pH=6.5±0.1,常温常压条件下对5 mg/L的As(V)的吸附去除率为90.35%,吸附速率较快,在30 min即可达到吸附平衡。通过M-NZVI、Ca-ALG和NZVI的热力学对比实验可知,M-NZVI表现出优越的吸附性能。溶液吸附剂添加量、初始pH值、离子浓度等因素对M-NZVI吸附水中砷离子的效率有一定影响:在其他条件不变的情况下,As(V)的去除率随着添加量的增加而逐渐增大;M-NZVI对As(V)的最佳吸附效果在pH=6~7范围之间;溶液中高浓度NaCl能对M-NZVI的吸附性产生较强的干扰。同时,对于As(V) ≤ 5 mg/L的溶液,M-NZVI可以不做任何处理多次利用3~4次。这些结果显示,M-NZVI是一种用于原位修复重金属污染水体的潜在理想材料。

English Abstract

参考文献 (29)

返回顶部

目录

/

返回文章
返回