二段铁盐沉淀深度脱除高浓度含砷废水中的砷

廖亚龙, 周娟, 彭志强, 黄斐荣. 二段铁盐沉淀深度脱除高浓度含砷废水中的砷[J]. 环境工程学报, 2015, 9(11): 5261-5266. doi: 10.12030/j.cjee.20151121
引用本文: 廖亚龙, 周娟, 彭志强, 黄斐荣. 二段铁盐沉淀深度脱除高浓度含砷废水中的砷[J]. 环境工程学报, 2015, 9(11): 5261-5266. doi: 10.12030/j.cjee.20151121
Liao Yalong, Zhou Juan, Peng Zhiqiang, Huang Feirong. Removal of arsenic from wastewater containing high arsenic by secondary precipitating in presence of ferric salt[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5261-5266. doi: 10.12030/j.cjee.20151121
Citation: Liao Yalong, Zhou Juan, Peng Zhiqiang, Huang Feirong. Removal of arsenic from wastewater containing high arsenic by secondary precipitating in presence of ferric salt[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5261-5266. doi: 10.12030/j.cjee.20151121

二段铁盐沉淀深度脱除高浓度含砷废水中的砷

  • 基金项目:

    国家自然科学基金资助项目(21266011,21566017)

    校企预研基金(4201252011)

  • 中图分类号: X758

Removal of arsenic from wastewater containing high arsenic by secondary precipitating in presence of ferric salt

  • Fund Project:
  • 摘要: 探索高浓度含砷废水中砷的深度脱除方法及脱除机理。采用预氧化-二段铁盐沉淀的方法脱除炼铅烟尘浸出液中的砷,研究影响砷脱除效率的控制条件和因素,砷脱除机理。结果表明,用双氧水氧化原料液中的低价铁和砷,加FeCl3调节铁砷比=1,在pH=4~5、T=60~70℃反应60 min,砷的脱除率达到99.95%,XRD分析结果表明,沉淀物为非晶态砷酸铁形态;在二段除砷中,控制铁砷比=5、pH=7~8,除砷后液中的砷含量小于0.014 mg/L,远低于允许的排放限值。采用二段铁盐脱砷工艺可以将高砷溶液中的砷深度脱除。
  • 加载中
  • [1] 李娜, 孙竹梅, 阮福辉, 等. 三氯化铁除砷(Ⅲ)机理. 化工学报, 2012, 63(7): 2224-2228 Li Na, Sun Zhumei, Ruan Fuhui, et al. Mechanism of removing arsenic(Ⅲ) with ferric chloride. CIESC Journal, 2012, 63(7): 2224-2228(in Chinese)
    [2] 郑雅杰, 崔涛, 彭映林. 二段脱铜液还原结晶法脱砷新工艺. 中国有色金属学报, 2012, 22(7): 2103-2108 Zheng Yajie, Cui Tao, Peng Yinglin. New process of arsenic removal from second stage decopperizing electrolyte by reduction and crystallization. The Chinese Journal of Nonferrous Metals, 2012, 22(7): 2103-2108(in Chinese)
    [3] 梁慧锋, 马子川, 刘占牛. 新生态二氧化锰的性质及pH值影响除砷效果的研究. 无机化学学报, 2006, 22(4): 743-747 Liang Huifeng, Ma Zichuan, Liu Zhanniu. Fresh MnO2: Properties and pH effect on arsenate removal. Chinese Journal of Inorganic Chemistry, 2006, 22(4): 743-747(in Chinese)
    [4] Nabi D., Aslam I., Qazi I. A. Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. Journal of Environmental Sciences, 2009, 21(3): 402-408
    [5] Giles D. E., Mohapatra M., Issa T. B., et al. Iron and aluminium based adsorption strategies for removing arsenic from water. Journal of Environmental Management, 2011, 92(12): 3011-3022
    [6] Miller G. P., Norman D. I., Frisch P. L. A comment on arsenic species separation using ion exchange. Water Research, 2000, 34(4): 1397-1400
    [7] An B., Liang Qiqi, Zhao Dongye. Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles. Water Research, 2011, 45(5): 1961-1972
    [8] Foster S., Maher W., Krikowa F., et al. A microwave assisted sequential extraction of water and dilute acid soluble arsenic species from marine plant and animal tissues. Talanta, 2007, 71(2): 537-549
    [9] Shih M. C. An overview of arsenic removal by pressure-drivenmembrane processes. Desalination, 2005, 172(1): 85-97
    [10] 合金, 愈杰, 王占宇. FDAs-1脱砷剂的研究与开发. 工业催化, 2004, 12(3): 14-16 He Jin, Yu Jie, Wang Zhanyu. Development of FDAs-1 dearsenic catalyst. Industrial Catalysis, 2004, 12(3): 14-16(in Chinese)
    [11] 曹育才, 李猷. 液态石油烃的脱砷及砷化物与亚铜探针的相互作用. 物理化学学报, 2009, 25(8): 1495-1503 Cao Yucai, Li You. Dearsenication of liquid hydrocarbons and interaction between arsenic compounds and cuprous probes. Acta Physico-Chimica Sinica, 2009, 25(8): 1495-1503(in Chinese)
    [12] 王小平, 周振联. 石灰铁盐法除砷中和渣的资源化制砖. 环境工程, 2003, 21(5): 46-48 Wang Xiaoping, Zhou Zhenlian. Bricks made from neutralization slags with arsenic removal by lime and ferric salts. Environmental Engineering, 2003, 21(5): 46-48(in Chinese)
    [13] 刘树根, 田学达. 含砷固体废物的处理现状与展望. 湿法冶金, 2005, 24(4): 183-186 Liu Sugen, Tian Xueda. Situation and prospect on treating of arsenic-containing solid waste. Hydrometallurgy of China, 2005, 24(4): 183-186(in Chinese)
    [14] 朱义年, 张学洪, 解庆林, 等. 砷酸盐的溶解度及其稳定性随pH值的变化. 环境化学, 2003, 22(5): 478-484 Zhu Yinian, Zhang Xuehong, Xie Qinglin, et al. Dependence of arsenate solubility and stability on pH value. Environmental Chemistry, 2003, 22(5): 478-484(in Chinese)
    [15] 陈胜利, 郭学益, 梁永宣. 粗结晶硫酸铜脱除砷、锑和铋研究. 中南大学学报(自然科学版), 2010, 41(4): 1251-1255 Chen Shengli, Guo Xueyi, Liang Yongxuan. Remove of arsenic, antimony and bismuth from crude crystal copper sulfate. Journal of Central South University(Science and Technology), 2010, 41(4): 1251-1255(in Chinese)
    [16] 龚竹青, 李景升, 杨喜云. 硫酸铜脱除砷、铁的工艺研究. 中南工业大学学报, 2000, 31(3): 222-224 Gong Zhuqing, Li Jingsheng, Yang Xiyun. Process research of removing arsenic and iron in copper sulfate. Journal of Central South University of Technology, 2000, 31(3): 222-224(in Chinese)
    [17] Dong Haoran, Guan Xiaohong, Wang Dansi, et al. A novel application of H2O2-Fe(Ⅱ) process for arsenate removal from synthetic acid mine drainage(AMD) water. Chemosphere, 2011, 85(7): 1115-1121
    [18] Han Binbing, Runnells T., Zimbron J., et al. Arsenic removal from drinking water by flocculation and microfiltration. Desalination, 2002, 145(1-3): 293-298
    [19] Katsoyiannis I. A., Zouboulis A. I. Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Research, 2002, 36(20): 5141-5155
    [20] 许根福. 处理高砷浓度工业废水的化学沉淀法. 湿法冶金, 2009, 28(1): 12-17 Xu Genfu. Chemical precipitation methods for treatment of high-arsenic concentration industrial effluents. Hydrometallurgy of China, 2009, 28(1): 12-17(in Chinese)
    [21] 方兆珩, 石伟, 韩宝玲, 等. 高砷溶液中和脱砷过程. 化工冶金, 2000, 21(4): 359-362 Fang Zhaoheng, Shi Wei, Han Baoling, et al. Removal of arsenic from high arsenic solutions by scorodite precipitation. Engineering Chemistry & Metallurgy, 2000, 21(4): 359-362(in Chinese)
    [22] 张荣良, 丘克强, 谢永金, 等. 铜冶炼闪速炉烟尘氧化浸出与中和脱砷. 中南大学学报(自然科学版), 2006, 37(1): 73-78 Zhang Rongliang, Qiu Keqiang, Xie Yongjin, et al. Treatment process of dust from flash smelting furnace at copper smelter by oxidative leaching and dearsenifying process from leaching solution. Journal of Central South University(Science and Technology), 2006, 37(1): 73-78(in Chinese)
    [23] 邱立萍, 莫晓丹. 砷污染处理的工业应用研究. 工业水处理, 2002, 22(9): 29-31 Qiu Liping, Mo Xiaodan. Study on the industrial application of arsenic pollution treatment. Industrial Water Treatment, 2002, 22(9): 29-31(in Chinese)
    [24] Dinesh M., Charles U. P. Jr. Arsenic removal from water/wastewater using adsorbents:A critical review. Journal of Hazardous Materials, 2007, 142(1-2): 1-53
    [25] 张海燕, 张盼月, 曾光明, 等. 高铁酸钾预氧化-三氯化铁混凝去除水中As3+. 化工环保, 2008, 28(6): 495-499 Zhang Haiyan, Zhang Panyue, Zeng Guangming, et al. Removal of As3+ from water by K2FeO4 preoxidation-FeCl3 coagulation. Environmental Protection of Chemical Industry, 2008, 28(6): 495-499(in Chinese)
    [26] 蒋学先, 何贵香, 李旭光, 等. 高砷烟尘脱砷试验研究. 湿法冶金, 2010, 29(3): 199-202, 210 Jiang Xuexian, He Guiciang, Li Xuguang, et al. Experimental research on dearsenization of high arsenic fume. Hydrometallurgy of China, 2010, 29(3): 199-202, 210(in Chinese)
  • 加载中
计量
  • 文章访问数:  2638
  • HTML全文浏览数:  1799
  • PDF下载数:  493
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-09-22
  • 刊出日期:  2015-11-18
廖亚龙, 周娟, 彭志强, 黄斐荣. 二段铁盐沉淀深度脱除高浓度含砷废水中的砷[J]. 环境工程学报, 2015, 9(11): 5261-5266. doi: 10.12030/j.cjee.20151121
引用本文: 廖亚龙, 周娟, 彭志强, 黄斐荣. 二段铁盐沉淀深度脱除高浓度含砷废水中的砷[J]. 环境工程学报, 2015, 9(11): 5261-5266. doi: 10.12030/j.cjee.20151121
Liao Yalong, Zhou Juan, Peng Zhiqiang, Huang Feirong. Removal of arsenic from wastewater containing high arsenic by secondary precipitating in presence of ferric salt[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5261-5266. doi: 10.12030/j.cjee.20151121
Citation: Liao Yalong, Zhou Juan, Peng Zhiqiang, Huang Feirong. Removal of arsenic from wastewater containing high arsenic by secondary precipitating in presence of ferric salt[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5261-5266. doi: 10.12030/j.cjee.20151121

二段铁盐沉淀深度脱除高浓度含砷废水中的砷

  • 1. 昆明理工大学冶金与能源工程学院, 昆明 650093
基金项目:

国家自然科学基金资助项目(21266011,21566017)

校企预研基金(4201252011)

摘要: 探索高浓度含砷废水中砷的深度脱除方法及脱除机理。采用预氧化-二段铁盐沉淀的方法脱除炼铅烟尘浸出液中的砷,研究影响砷脱除效率的控制条件和因素,砷脱除机理。结果表明,用双氧水氧化原料液中的低价铁和砷,加FeCl3调节铁砷比=1,在pH=4~5、T=60~70℃反应60 min,砷的脱除率达到99.95%,XRD分析结果表明,沉淀物为非晶态砷酸铁形态;在二段除砷中,控制铁砷比=5、pH=7~8,除砷后液中的砷含量小于0.014 mg/L,远低于允许的排放限值。采用二段铁盐脱砷工艺可以将高砷溶液中的砷深度脱除。

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回