进水氨氮浓度对好氧/缺氧/延长闲置SBR脱氮除磷性能的影响

刘芳芳, 陈洪波, 李小明, 杨麒, 赵建伟, 向沙, 李娟娟, 贾利涛. 进水氨氮浓度对好氧/缺氧/延长闲置SBR脱氮除磷性能的影响[J]. 环境工程学报, 2015, 9(12): 5775-5782. doi: 10.12030/j.cjee.20151221
引用本文: 刘芳芳, 陈洪波, 李小明, 杨麒, 赵建伟, 向沙, 李娟娟, 贾利涛. 进水氨氮浓度对好氧/缺氧/延长闲置SBR脱氮除磷性能的影响[J]. 环境工程学报, 2015, 9(12): 5775-5782. doi: 10.12030/j.cjee.20151221
Liu Fangfang, Chen Hongbo, Li Xiaoming, Yang Qi, Zhao Jianwei, Xiang Sha, Li Juanjuan, Jia Litao. Effect of influent ammonia concentration on biological nutrient removal in sequencing batch reactor operated as oxic/anoxic/extended-idle regime[J]. Chinese Journal of Environmental Engineering, 2015, 9(12): 5775-5782. doi: 10.12030/j.cjee.20151221
Citation: Liu Fangfang, Chen Hongbo, Li Xiaoming, Yang Qi, Zhao Jianwei, Xiang Sha, Li Juanjuan, Jia Litao. Effect of influent ammonia concentration on biological nutrient removal in sequencing batch reactor operated as oxic/anoxic/extended-idle regime[J]. Chinese Journal of Environmental Engineering, 2015, 9(12): 5775-5782. doi: 10.12030/j.cjee.20151221

进水氨氮浓度对好氧/缺氧/延长闲置SBR脱氮除磷性能的影响

  • 基金项目:

    国家自然科学基金资助项目(51278175,51378188)

    湖南省研究生科研创新项目(CX2014B140)

  • 中图分类号: X703

Effect of influent ammonia concentration on biological nutrient removal in sequencing batch reactor operated as oxic/anoxic/extended-idle regime

  • Fund Project:
  • 摘要: 以合成废水为研究对象,考察了不同进水氨氮浓度(20,40和60 mg/L)条件下好氧/缺氧/延长闲置SBR的脱氮除磷效果,并通过分析典型周期内氮磷元素及微生物体内各储能物质的变化,探究了进水氨氮浓度对好氧/缺氧/延长闲置SBR脱氮除磷性能的影响机理.结果表明,进水氨氮浓度为20,40和60 mg/L时,系统总磷(TP)去除率分别为96.6%、90.1%和81.8%,总氮去除率分别为93.1%、74.9%和60.0%.研究表明,进水氨氮浓度可影响好氧释磷与吸磷、聚羟基脂肪酸酯(PHAs)合成、缺氧反硝化以及闲置段释磷.进水氨氮浓度越高,用于微生物生长的碳源越多,PHAs的合成量越少,则好氧段吸磷减少;较高的进水氨氮浓度使缺氧段反硝化不彻底,较多的硝态氮将抑制下一周期好氧段释磷,系统脱氮除磷性能减弱.
  • 加载中
  • [1] 张自杰, 林荣忱. 排水工程(下册) (第4版). 北京: 中国建筑工业出版社, 2000
    [2] Yang Shuai, Yang Fenglin, Fu Zhimin, et al. Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment. Journal of Hazardous Materials, 2010, 175(1-3): 551-557
    [3] Arun V., Mino T., Matsuo T. Biological mechanism of acetate uptake mediated by carbohydrate consumption in excess phosphorus removal systems. Water Research, 1988, 22(5): 565-570
    [4] 宋周兵, 于薇. 碳氮磷比失调对污水生物脱氮除磷的影响. 四川环境, 2008, 27(6): 73-76 Song Zhoubing, Yu Wei. Influence of disproportion of C/N/P ratios on biological removal of nitrogen and phosphorus from wastewater. Sichuan Environment, 2008, 27(6): 73-76(in Chinese)
    [5] Coats E. R., Mockos A., Loge F. J. Post-anoxic denitrification driven by PHA and glycogen within enhanced biological phosphorus removal. Bioresource Technology, 2011, 102(2): 1019-1027
    [6] Vocks M., Adama C., Lesjean B., et al. Enhanced post-denitrification without addition of an external carbon source in membrane bioreactors. Water Research, 2005, 39(14): 3360-3368
    [7] Wang Dongbo, Li Xiaoming, Yang Qi, et al. The probable metabolic relation between phosphate uptake and energy storages formations under single-stage oxic condition. Bioresource Technology, 2009, 100(17): 4005-4011
    [8] Wang Dongbo, Li Xiaoming, Yang Qi, et al. Improved biological phosphorus removal performance driven by the aerobic/extended-idle regime with propionate as the sole carbon source. Water Research, 2012, 46(12): 3868-3878
    [9] Chen Hongbo, Yang Qi, Li Xiaoming, et al. Post-anoxic denitrification via nitrite driven by PHB in feast-famine sequencing batch reactor. Chemosphere, 2013, 92(10): 1349-1355
    [10] Xu Dechao, Chen Hongbo, Li Xiaoming, et al. Enhanced biological nutrient removal in sequencing batch reactors operated as static/oxic/anoxic (SOA) process. Bioresource Technology, 2013, 143: 204-211
    [11] 徐少娟, 蒋涛, 殷峻, 等. 进水氨氮浓度对强化生物除磷(EBPR)系统除磷特性及微生物群落结构的影响. 环境科学学报, 2011, 31(4): 745-751 Xu Shaojuan, Jiang Tao, Yin Jun, et al. Effects of influent ammonia concentration on phosphorus removal and the microbial community in an EBPR system. Acta Scientiae Circumstantiae, 2011, 31(4): 745-751(in Chinese)
    [12] Oehmen A., Lemos P. C., Carvalho G., et al. Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Research, 2007, 41(11): 2271-2300
    [13] Tay J. H., Show K. Y., Jeyaseelan S. Effects of media characteristics on performance of upflow anaerobic packed-bed reactors. Journal of Environmental Engineering, 1996, 122(6): 469-476
    [14] Takabatake H., Satoh H., Mino T., et al. PHA (polyhydroxyaikanoate) production potential of activated sludge treating wastewater. Water Science and Technology, 2002, 45(12): 119-126
    [15] Wang Dongbo, Li Xiaoming, Yang Qi, et al. Biological phosphorus removal in sequencing batch reactor with single-stage oxic process. Bioresource Technology, 2008, 99(13): 5466-5473
    [16] 曾恬静. SBR单级好氧工艺生物除磷研究. 长沙: 湖南大学硕士学位论文, 2009 Zeng Tianjing. Study on biological phosphorus removal by single-stage oxic process in sequencing batch reactor. Changsha: Master Dissertation of Hunan University, 2009(in Chinese)
    [17] Oehmen A., Vives M. T., Lu Huabing, et al. The effect of pH on the competition between polyphosphate-accumulating organisms and glycogen-accumulating organisms. Water Research, 2005, 39(15): 3727-3737
    [18] Kuba T., Wachtmeister A., van Loosdrecht M. C. M., et al. Effect of nitrate on phosphorus release in biological phosphorus removal systems. Water Science and Technology, 1994, 30(6): 263-269
    [19] Montil A., Hall E. R., van Loosdrecht M. C. M. Kinetics of phosphorus release and uptake in a membrane-assisted biological phosphorus removal process. Journal of Environmental Engineering, 2007, 133(9): 889-908
    [20] Zhou Yan, Oehmen A., Lim M., et al. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants. Water Research, 2011, 45(15): 4672-4682
    [21] Saito T., Brdjanovic D., van Loosdrecht M. C. M. Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Water Research, 2004, 38(17): 3760-3768
    [22] Anthonisen A. C., Loehr R. C., Prakasam T. B. S., et al. Inhibition of nitrification by ammonia and nitrous acid. Water Pollution Control Federation, 1976, 48(5): 835-852
    [23] Bruce E. R., Perry L. M. Environmental Biotechnology: Principles and Applications. New York: Inc. McGraw-Hill, 2001
    [24] Satoh H., Nakamura Y., Ono H., et al. Effect of oxygen concentration on nitrification and denitrification in single activated sludge flocs. Biotechnology Bioengineering, 2003, 83(5): 604-607
    [25] Li Xiaoming, Chen Hongbo, Yang Qi, et al. Biological nutrient removal in a sequencing batch reactor operated as oxic/anoxic/extended-idle regime. Chemosphere, 2014, 105: 75-81
    [26] Kujawa K., Klapwijk B. A method to estimate denitrification potential for predenitrification systems using NUR batch test. Water Research, 1999, 33(10): 2291-2300
    [27] Kong Yunhong, Xia Yun, Nielsen J. L., et al. Ecophysiology of a group of uncultured Gammaproteobacterial glycogen-accumulating organisms in fulls-cale enhanced biological phosphorus removal wastewater treatment plants. Environmental Microbiology, 2006, 8(3): 479-489
    [28] Tsai M. W., Wentzel M. C., Ekama G. A. The effect of residual ammonia concentration under aerobic conditions on the growth of Microthrix parvicella in biological nutrient removal plants. Water Research, 2003, 37(12): 3009-3015
    [29] 杨亚红, 彭党聪, 李磊, 等. 低DO微孔曝气变速氧化沟脱氮能力恢复效果分析. 中国环境科学, 2013, 33(3): 436-442 Yang Yahong, Peng Dangcong, Li Lei, et al. Recovering biological nitrogen removal in pilot-scale variable-velocity oxidation ditch under low concentration. China Environmental Science, 2013, 33(3): 436-442(in Chinese)
    [30] Lu Huabing, Keller J., Yuan Zhiguo. Endogenous metabolism of Candidatus Accumulibacter phosphatis under various starvation conditions. Water Research, 2007, 41(20): 4646-4656
    [31] 丁艳, 王冬波, 李小明, 等. pH值对SBR单级好氧生物除磷的影响. 中国环境科学, 2010, 30(3): 333-338 Ding Yan, Wang Dongbo, Li Xiaoming, et al. Effect of pH on phosphorus removal in sequencing batch reactor with single-stage oxic process. China Environmental Science, 2010, 30(3): 333-338(in Chinese)
  • 加载中
计量
  • 文章访问数:  1813
  • HTML全文浏览数:  1359
  • PDF下载数:  500
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-11-02
  • 刊出日期:  2015-12-23
刘芳芳, 陈洪波, 李小明, 杨麒, 赵建伟, 向沙, 李娟娟, 贾利涛. 进水氨氮浓度对好氧/缺氧/延长闲置SBR脱氮除磷性能的影响[J]. 环境工程学报, 2015, 9(12): 5775-5782. doi: 10.12030/j.cjee.20151221
引用本文: 刘芳芳, 陈洪波, 李小明, 杨麒, 赵建伟, 向沙, 李娟娟, 贾利涛. 进水氨氮浓度对好氧/缺氧/延长闲置SBR脱氮除磷性能的影响[J]. 环境工程学报, 2015, 9(12): 5775-5782. doi: 10.12030/j.cjee.20151221
Liu Fangfang, Chen Hongbo, Li Xiaoming, Yang Qi, Zhao Jianwei, Xiang Sha, Li Juanjuan, Jia Litao. Effect of influent ammonia concentration on biological nutrient removal in sequencing batch reactor operated as oxic/anoxic/extended-idle regime[J]. Chinese Journal of Environmental Engineering, 2015, 9(12): 5775-5782. doi: 10.12030/j.cjee.20151221
Citation: Liu Fangfang, Chen Hongbo, Li Xiaoming, Yang Qi, Zhao Jianwei, Xiang Sha, Li Juanjuan, Jia Litao. Effect of influent ammonia concentration on biological nutrient removal in sequencing batch reactor operated as oxic/anoxic/extended-idle regime[J]. Chinese Journal of Environmental Engineering, 2015, 9(12): 5775-5782. doi: 10.12030/j.cjee.20151221

进水氨氮浓度对好氧/缺氧/延长闲置SBR脱氮除磷性能的影响

  • 1.  湖南大学环境科学与工程学院, 长沙 410082
  • 2.  环境生物与控制教育部重点实验室(湖南大学), 长沙 410082
基金项目:

国家自然科学基金资助项目(51278175,51378188)

湖南省研究生科研创新项目(CX2014B140)

摘要: 以合成废水为研究对象,考察了不同进水氨氮浓度(20,40和60 mg/L)条件下好氧/缺氧/延长闲置SBR的脱氮除磷效果,并通过分析典型周期内氮磷元素及微生物体内各储能物质的变化,探究了进水氨氮浓度对好氧/缺氧/延长闲置SBR脱氮除磷性能的影响机理.结果表明,进水氨氮浓度为20,40和60 mg/L时,系统总磷(TP)去除率分别为96.6%、90.1%和81.8%,总氮去除率分别为93.1%、74.9%和60.0%.研究表明,进水氨氮浓度可影响好氧释磷与吸磷、聚羟基脂肪酸酯(PHAs)合成、缺氧反硝化以及闲置段释磷.进水氨氮浓度越高,用于微生物生长的碳源越多,PHAs的合成量越少,则好氧段吸磷减少;较高的进水氨氮浓度使缺氧段反硝化不彻底,较多的硝态氮将抑制下一周期好氧段释磷,系统脱氮除磷性能减弱.

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回