磁场与微生物固定技术处理酸性镀铜废水

靳小蓓, 巢云龙, 李宏君, 刘言, 董慧, 李宁, 隋海然, 林山杉. 磁场与微生物固定技术处理酸性镀铜废水[J]. 环境工程学报, 2016, 10(3): 1041-1047. doi: 10.12030/j.cjee.20160305
引用本文: 靳小蓓, 巢云龙, 李宏君, 刘言, 董慧, 李宁, 隋海然, 林山杉. 磁场与微生物固定技术处理酸性镀铜废水[J]. 环境工程学报, 2016, 10(3): 1041-1047. doi: 10.12030/j.cjee.20160305
Jin Xiaobei, Chao Yunlong, Li Hongjun, Liu Yan, Dong Hui, Li Ning, Sui Hairan, Lin Shanshan. Treatment of acid copper plating wastewater by magnetic combined immobilized microorganism technique[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1041-1047. doi: 10.12030/j.cjee.20160305
Citation: Jin Xiaobei, Chao Yunlong, Li Hongjun, Liu Yan, Dong Hui, Li Ning, Sui Hairan, Lin Shanshan. Treatment of acid copper plating wastewater by magnetic combined immobilized microorganism technique[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1041-1047. doi: 10.12030/j.cjee.20160305

磁场与微生物固定技术处理酸性镀铜废水

  • 基金项目:

    国家自然科学基金资助项目(51278093,51278065)

  • 中图分类号: X703

Treatment of acid copper plating wastewater by magnetic combined immobilized microorganism technique

  • Fund Project:
  • 摘要: 实验采用磁场与微生物固定技术结合的方法处理酸性镀铜废水,将磁场存在条件下经酸性镀铜废水驯化后的微生物固定在磁性载体表面处理酸性镀铜废水。设计正交实验研究气水比、磁场强度、水力停留时间、进水初始浓度4因素影响下铜离子的去除效果,各因素对实验结果的影响程度由大到小依次为:气水比> 磁场强度> 水力停留时间> 初始浓度。进出水的pH值测定发现,处理后出水pH值由原来的2.50左右上升至4.00~5.00。机理研究表明,菌体对Cu2+的去除作用包括菌体细胞的表面吸附、跨细胞膜的主动运输和积累等作用。
  • 加载中
  • [1] Ramírez Zamora R. M., Schouwenaars R., Moreno Durán A., et al. Production of activated carbon form petroleum coke and its application in water treatment for the removal of metals and phenol. Water Science and Technology, 2000, 42(5-6):119-126
    [2] Lin C. J., Chang J. E., Lu M. C. The stabilization of biosolid using fly ash and slag//Proceedings of the twelfth International Conference on Solid Waste Technology and Management. Philadelphia, PA U.S.A., 1996:8
    [3] Vijayaraghavan K., Yun Y. S. Bacterial biosorbents and biosorption. Biotechnology Advances, 2008, 26(3):266-291
    [4] Kawamura Y., Mitsuhashi M., Tanibe H., et al, Adsorption of metal ions on polyaminated highly porous chitosan chelating resin. Industrial and Engineering Chemistry Research, 1993, 32(2):386-391
    [5] Mack C., Wilhelmi B., Duncan J. R., et al. Biosorption of precious metals. Biotechnology Advances, 2007, 25(3):264-271
    [6] Özer A., Özer D., Ekiz Ibrahim H. The equilibrium and kinetic modelling of the biosorption of copper(II) ions on Cladophora crispata. Adsorption, 2005, 10(4):317-326
    [7] Nilanjana D. Recovery of precious metals through biosorption:A review. Hydrometallurgy, 2010, 103(1-4):180-189
    [8] Mata Y. N., Torres E., Blázquez M. L., et al. Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. Journal of Hazardous Materials, 2009, 166(2-3):612-618
    [9] Konovalova V. V., Dmytrenko G. M., Nigmatullin R. R., et al. Chromium(Ⅵ) reduction in a membrane bioreactor with immobilized Pseudomonas cells. Enzyme and Microbial Technology, 2003, 33(7):899-907
    [10] Guibal E., Von Offenberg Sweeney N., Vincent T., et al. Sulfur derivatives of chitosan for palladium sorption. Reactive and Functional Polymers, 2002, 50(2):149-163
    [11] 孙津生. 磁场-趋磁细菌复合工艺处理含重金属离子废水. 天津:天津大学博士学位论文, 2005 Sun Jinsheng. Treating wastewater with heavy metal ions with magnetic field-magnetotactic bacteria comprehensive technology. Tianjin:Doctor Dissertation of Tianjin University, 2005(in Chinese)
    [12] 王建龙. 生物固定化技术与水污染控制. 北京:科学出版社, 2002
    [13] 国家环境保护总局, 水和废水监测分析方法(第4版). 北京:中国环境科学出版社, 2002
    [14] Han X., Wong Y. S., Tam N. F. Y. Surface complexation mechanism and modeling in Cr(III) biosorption by a microalgal isolate, Chlorella miniata. Journal of Colloid and Interface Science, 2006, 303(2):365-371
    [15] Minnan L., Jinli H., Xiaobin W., et al. Isolation and characterization of a high H2-producing strain Klebsiella oxytoca HP1 from a hot spring. Research in Microbiology, 2005, 156(1):76-81
    [16] Markov S. A., Averitt J., Waldron B. Bioreactor for glycerol conversion into H2 by bacterium Enterobacter aerogenes. International Journal of Hydrogen Energy, 2011, 36(1):262-266
    [17] Liu Fei, Fang Baishan. Optimization of bio-hydrogen production from biodiesel wastes by Klebisiella pneumoniae. Biotechnology Journal, 2007, 2(3):374-380
    [18] Khanna N., Kotay S. M., Gilbert J. J., et al. Improvement of biohydrogen production by Enterobacter cloacae IIT-BT 08 under regulated pH. Journal of Biotechnology, 2011, 152(1-2):9-15
    [19] Wu K. J., Saratale G. D., Lo Y. C., et al. Simultaneous production of 2,3-butanediol, ethanol and hydrogen with a Klebsiella sp. strain isolated from sewage sludge. Bioresource Technology, 2008, 99(17):7966-7970
    [20] Niu Kun, Zhang Xu, Tan Wensong, et al. Characteristics of fermentative hydrogen production with Klebsiella pneumoniae ECU-15 isolated from anaerobic sewage sludge. International Journal of Hydrogen Energy, 2010, 35(1):71-80
    [21] Wu K. J., Lin Y. H., Lo Y. C., et al. Converting glycerol into hydrogen, ethanol, and diols with a Klebsiella sp. HE1 strain via anaerobic fermentation. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(1):20-25
    [22] Kumar N., Das D. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochemistry, 2000, 35(6):589-593
    [23] Tucker S. L., Thornton C. R., Tasker K., et al. A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. The Plant Cell, 2004, 16(6):1575-1588
    [24] Wu Chingmei, Lin Lihyuan. Immobilization of metallothionein as a sensitive biosensor chip for the detection of metal ions by surface plasmon resonance. Biosensors and Bioelectronics, 2004, 20(4):864-871
    [25] Klaus T., Joerger R., Olsson E., et al. Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24):13611-13614
  • 加载中
计量
  • 文章访问数:  2138
  • HTML全文浏览数:  1684
  • PDF下载数:  572
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-02-21
  • 刊出日期:  2016-03-18
靳小蓓, 巢云龙, 李宏君, 刘言, 董慧, 李宁, 隋海然, 林山杉. 磁场与微生物固定技术处理酸性镀铜废水[J]. 环境工程学报, 2016, 10(3): 1041-1047. doi: 10.12030/j.cjee.20160305
引用本文: 靳小蓓, 巢云龙, 李宏君, 刘言, 董慧, 李宁, 隋海然, 林山杉. 磁场与微生物固定技术处理酸性镀铜废水[J]. 环境工程学报, 2016, 10(3): 1041-1047. doi: 10.12030/j.cjee.20160305
Jin Xiaobei, Chao Yunlong, Li Hongjun, Liu Yan, Dong Hui, Li Ning, Sui Hairan, Lin Shanshan. Treatment of acid copper plating wastewater by magnetic combined immobilized microorganism technique[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1041-1047. doi: 10.12030/j.cjee.20160305
Citation: Jin Xiaobei, Chao Yunlong, Li Hongjun, Liu Yan, Dong Hui, Li Ning, Sui Hairan, Lin Shanshan. Treatment of acid copper plating wastewater by magnetic combined immobilized microorganism technique[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1041-1047. doi: 10.12030/j.cjee.20160305

磁场与微生物固定技术处理酸性镀铜废水

  • 1. 东北师范大学环境学院, 长春 130024
基金项目:

国家自然科学基金资助项目(51278093,51278065)

摘要: 实验采用磁场与微生物固定技术结合的方法处理酸性镀铜废水,将磁场存在条件下经酸性镀铜废水驯化后的微生物固定在磁性载体表面处理酸性镀铜废水。设计正交实验研究气水比、磁场强度、水力停留时间、进水初始浓度4因素影响下铜离子的去除效果,各因素对实验结果的影响程度由大到小依次为:气水比> 磁场强度> 水力停留时间> 初始浓度。进出水的pH值测定发现,处理后出水pH值由原来的2.50左右上升至4.00~5.00。机理研究表明,菌体对Cu2+的去除作用包括菌体细胞的表面吸附、跨细胞膜的主动运输和积累等作用。

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回