对柴油机集成后处理系统催化性能的数值模拟

谭理刚, 刘少春, 刘湘玲, 郭雅各, 冯鹏飞, 杨树宝. 对柴油机集成后处理系统催化性能的数值模拟[J]. 环境工程学报, 2017, 11(12): 6359-6365. doi: 10.12030/j.cjee.201702116
引用本文: 谭理刚, 刘少春, 刘湘玲, 郭雅各, 冯鹏飞, 杨树宝. 对柴油机集成后处理系统催化性能的数值模拟[J]. 环境工程学报, 2017, 11(12): 6359-6365. doi: 10.12030/j.cjee.201702116
TAN Ligang, LIU Shaochun, LIU Xiangling, GUO Yage, FENG Pengfei, YANG Shubao. Numerical simulation of catalytic performance of diesel engine integrated after-treatment system[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6359-6365. doi: 10.12030/j.cjee.201702116
Citation: TAN Ligang, LIU Shaochun, LIU Xiangling, GUO Yage, FENG Pengfei, YANG Shubao. Numerical simulation of catalytic performance of diesel engine integrated after-treatment system[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6359-6365. doi: 10.12030/j.cjee.201702116

对柴油机集成后处理系统催化性能的数值模拟

  • 基金项目:

    国家科技支撑计划项目(2014BAG09B01-005)湖南省车辆工程"十二五"重点建设学科开放基金项目

  • 中图分类号: TK432

Numerical simulation of catalytic performance of diesel engine integrated after-treatment system

  • Fund Project:
  • 摘要: 为研究柴油机集成后处理系统的催化性能,应用CFD软件建立包括尿素水溶液分解、一氧化氮氧化和NOx选择性催化还原化学反应的数值计算模型,计算在SCR催化器上游加装DOC和CDPF催化器后不同排气温度和氨氮比时系统的催化效率。结果表明:当温度达到300℃以上时,尿素分解效率可达81%左右;NO的氧化效率基本维持在45%~60%,系统具有很好的低温催化性能,200℃时NOx催化效率可达76.6%;当氨氮比为1.0时,大多数工况下NOx催化效率均高于90%,最高可达98.7%。通过台架实验验证了模拟结果与实验数据绝对误差在5%以内,表明模拟计算结果可靠,可为后处理系统的设计提供理论指导。
  • 加载中
  • [1] 帅石金,唐韬,赵彦光,等.柴油车排放法规及后处理技术的现状与展望[J]. 汽车安全与节能学报,2012,3(3):200-217
    [2] ROHR F, GRIßTEDE I, BREMM S. Concept study for NOx aftertreatment systems for Europe[R]. SAE Technical Paper,2009(1):632-642
    [3] HAMMERLE R. Urea SCR and DPF system for diesel sport utility vehicle meeting tier Ⅱ bin 5[C]//8th Diesel Engine Emissions Reduction Conference, San Diego, California, August. 2002:25-29
    [4] NAGAR N, HE X, IYENGAR V, et al. Real time implementation of DOC-DPF models on a production-intent ECU for controls and diagnostics of a PM emission control system[J]. Journal of Neurochemistry,2009,2(2):222-233
    [5] NOVA I, CIARDELLI C, TRONCONI E, et al. NH3-NO/NO2 chemistry over V-based catalysts and its role in the mechanism of the fast SCR reaction[J]. Catalysis Today,2006,114(1):3-12
    [6] CIARDELLI C, NOVA I, TRONCONI E, et al. NH3 SCR of NOx for diesel exhausts aftertreatment:Role of NO2 in catalytic mechanism, unsteady kinetics and monolith converter modelling[J]. Chemical Engineering Science,2007,62(18):5001-5006
    [7] 胡明江,马步伟.La1-xCexCuyMn1-yO3/HZSM-5催化剂低温去除柴油机碳烟和NOx[J]. 环境工程学报,2014,8(4):1573-1578
    [8] 李璞.基于CFD的SCR系统结构仿真研究[J]. 汽车工程学报,2013,3(3):218-222
    [9] 龚金科,张福杰,鄂加强,等.柴油机SCR催化剂载体结构参数优化[J].环境工程学报,2012,6(12):4573-4577
    [10] 唐韬,赵彦光,华伦,等.柴油机SCR系统尿素水溶液喷雾分解的试验研究[J]. 内燃机工程,2015,36(1):1-5
    [11] 谭理刚,何利华,寇传富,等.柴油机Urea-SCR系统喷射雾化的数值模拟[J]. 环境工程学报,2014,8(4):1554-1560
    [12] BIRKHOLD F, MEINGAST U, WASSERMANN P, et al. Analysis of the injection of urea-water-solution for automotive SCR DeNOx systems:Modeling of two-phase flow and spray/wall-interaction[R]. SAE Technical Paper,2006(6):0643-0655
    [13] FINO D. Diesel emission control:Catalytic filters for particulate removal[J]. Science and Technology of Advanced Materials,2007,8(1):93-100
    [14] CLOUDT R, BAERT R, WILLEMS F, et al. SCR-only concept for heavy-duty Euro VI applications[J]. MTZ Worldwide,2009,70(9):58-63
    [15] 王静,王谦,徐航,等.车用柴油机SCR系统NOx转化效率影响因素[J].内燃机学报,2015,33(5):453-460
    [16] 辛喆,张寅,王顺喜,等.柴油机Urea-SCR催化器转化效率影响因素研究[J]. 农业机械学报,2011,42(9):30-34
    [17] LUNDSTRÖM A, ANDERSSON B, OLSSON L. Urea thermolysis studied under flow reactor conditions using DSC and FT-IR[J]. Chemical Engineering Journal,2009,150(2):544-550.
    [18] GAN X, YAO D, WU F, et al. Modeling and simulation of urea-water-solution droplet evaporation and thermolysis processes for SCR systems[J]. Chinese Journal of Chemical Engineering,2016,24(8):1065-1073
    [19] ABU-RAMADAN E, SAHA K, LI X. Modeling the depleting mechanism of urea-water-solution droplet for automotive selective catalytic reduction systems[J]. AIChE Journal,2011,57(11):3210-3225
    [20] MADIA G, KOEBEL M, ELSENER M, et al. The effect of an oxidation precatalyst on the NOx reduction by ammonia SCR[J]. Industrial & engineering chemistry research,2002,41(15):3512-3517
    [21] TRONCONI E, NOVA I, CIARDELLI C, et al. Redox features in the catalytic mechanism of the "standard" and "fast" NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods[J]. Journal of Catalysis,2007,245(1):1-10
    [22] BAIK J H, YIM S D, NAM I S, et al. Modeling of monolith reactor washcoated with CuZSM5 catalyst for removing NO from diesel engine by urea[J]. Industrial & Engineering Chemistry Research,2006,45(15):5258-5267
    [23] NOVA I, LIETTI L, TRONCONI E, et al. Dynamics of SCR reaction over a TiO2-supported vanadia-tungsta commercial catalyst[J]. Catalysis Today,2000,60(1):73-82
    [24] JOHANNESSEN T, SCHMIDT H, SVAGIN J, et al. Ammonia storage and delivery systems for automotive NOx aftertreatment[C]//SAE World Congress & Exhibition,2008
  • 加载中
计量
  • 文章访问数:  1929
  • HTML全文浏览数:  1702
  • PDF下载数:  457
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-08-21
  • 刊出日期:  2017-12-07
谭理刚, 刘少春, 刘湘玲, 郭雅各, 冯鹏飞, 杨树宝. 对柴油机集成后处理系统催化性能的数值模拟[J]. 环境工程学报, 2017, 11(12): 6359-6365. doi: 10.12030/j.cjee.201702116
引用本文: 谭理刚, 刘少春, 刘湘玲, 郭雅各, 冯鹏飞, 杨树宝. 对柴油机集成后处理系统催化性能的数值模拟[J]. 环境工程学报, 2017, 11(12): 6359-6365. doi: 10.12030/j.cjee.201702116
TAN Ligang, LIU Shaochun, LIU Xiangling, GUO Yage, FENG Pengfei, YANG Shubao. Numerical simulation of catalytic performance of diesel engine integrated after-treatment system[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6359-6365. doi: 10.12030/j.cjee.201702116
Citation: TAN Ligang, LIU Shaochun, LIU Xiangling, GUO Yage, FENG Pengfei, YANG Shubao. Numerical simulation of catalytic performance of diesel engine integrated after-treatment system[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6359-6365. doi: 10.12030/j.cjee.201702116

对柴油机集成后处理系统催化性能的数值模拟

  • 1. 湖南大学汽车车身先进设计制造国家重点实验室, 长沙 410082
  • 2. 湖南涉外经济学院, 长沙 410205
  • 3. 广西玉柴机器股份有限公司, 玉林 537000
基金项目:

国家科技支撑计划项目(2014BAG09B01-005)湖南省车辆工程"十二五"重点建设学科开放基金项目

摘要: 为研究柴油机集成后处理系统的催化性能,应用CFD软件建立包括尿素水溶液分解、一氧化氮氧化和NOx选择性催化还原化学反应的数值计算模型,计算在SCR催化器上游加装DOC和CDPF催化器后不同排气温度和氨氮比时系统的催化效率。结果表明:当温度达到300℃以上时,尿素分解效率可达81%左右;NO的氧化效率基本维持在45%~60%,系统具有很好的低温催化性能,200℃时NOx催化效率可达76.6%;当氨氮比为1.0时,大多数工况下NOx催化效率均高于90%,最高可达98.7%。通过台架实验验证了模拟结果与实验数据绝对误差在5%以内,表明模拟计算结果可靠,可为后处理系统的设计提供理论指导。

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回