再生水补水河道中流速对浮游藻类生长影响的模拟实验

魏桢, 贾海峰, 姜其贵, 孟德娟, 杨舒媛. 再生水补水河道中流速对浮游藻类生长影响的模拟实验[J]. 环境工程学报, 2017, 11(12): 6540-6546. doi: 10.12030/j.cjee.201703234
引用本文: 魏桢, 贾海峰, 姜其贵, 孟德娟, 杨舒媛. 再生水补水河道中流速对浮游藻类生长影响的模拟实验[J]. 环境工程学报, 2017, 11(12): 6540-6546. doi: 10.12030/j.cjee.201703234
WEI Zhen, JIA Haifeng, JIANG Qigui, MENG Dejuan, YANG Shuyuan. Simulation experiment of phytoplankton growth induced by flow velocity in rivers replenished with reclaimed water[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6540-6546. doi: 10.12030/j.cjee.201703234
Citation: WEI Zhen, JIA Haifeng, JIANG Qigui, MENG Dejuan, YANG Shuyuan. Simulation experiment of phytoplankton growth induced by flow velocity in rivers replenished with reclaimed water[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6540-6546. doi: 10.12030/j.cjee.201703234

再生水补水河道中流速对浮游藻类生长影响的模拟实验

  • 基金项目:

    北京市规划委员会项目(20162001285)

  • 中图分类号: X321

Simulation experiment of phytoplankton growth induced by flow velocity in rivers replenished with reclaimed water

  • Fund Project:
  • 摘要: 以再生水为主要补给水源的城市河道中,避免藻类水华是河道调控的重点之一。实际调控中,在控制藻类数量增长的同时,还应关注藻类群落的多样性,降低由于优势藻种的生长而导致水华的可能。在3种水深下各设置7组流速条件,利用环形水槽模拟研究不同组合条件下河道单元水体中浮游藻类的生长情况,通过计算藻类比生长率和藻类群落的香浓-威纳(Shannon-Wiener)指数描述藻类增长速率和群落生物多样性,从而对浮游藻类生长情况进行综合评价。实验结果显示,相同水深下浮游藻类比生长率在0.05~0.08 m·s-1流速范围内出现最大值,而适当降低水深有利于提高水体浮游藻类的群落多样性。综合分析比生长率和多样性得到,在0~0.05 m·s-1流速附近产生水华的潜势较高。
  • 加载中
  • [1] REYNOLDS S C, WHITE L M, CLARKE T R, et al. Suspension and settlement of particles in flowing water:Comparison of the effects of varying water depth and velocity in circulating channels[J]. Freshwater Biology,1990,24(1):23-34
    [2] WHITFORD L A, SCHUMACHER G J. Effect of current on mineral uptake and respiration by a freshwater algae[J].Limnology and Oceanography,1961,6(4):423-425
    [3] HEALEY F P. Interacting effects of light and nutrient limitation on the growth rate of Synechococcus linearis (cyanophyceae)[J]. Journal of Phycology,1985,21(1):134-146
    [4] BORCHARDT M A. Effects of flowing water on nitrogenand phosphoruslimited photosynthesis and optimum N:P ratios by spirogyra fluviatilis (charophyceae)[J]. Journal of Phycology,1994,30(3):418-430
    [5] LI F, ZHANG H, ZHU Y, et al. Effect of flow velocity on phytoplankton biomass and composition in a freshwater lake[J]. Science of the Total Environment,2013,447(1):64-71
    [6] STEINAMAN A D, MCINTIRE C D. Effects of current velocity and light energy on the structure foperiphyton assemblage in laboratory streams[J]. Journal of Phycology,1986,22(3):352-361
    [7] ESCARTIÍN J, AUBREY D G. Flow structure and dispersion within algal mats[J]. Estuarine Coastal & Shelf Science,1995,40(4):451-472
    [8] BIGGS B J F, THOMSEN H A. Disturbance of stream periphyton by perturbations in shear stress:Time to structural failure and differences in community resistance[J]. Journal of Phycology,1995,31(2):233-241
    [9] PANNARD A, BORMANS M, LAGADEUC Y. Short-term variability in physical forcing in temperate reservoirs:Effects on phytoplankton dynamics and sedimentary fluxes[J]. Freshwater Biology,2007,52(1):12-27
    [10] RUIZ J, MACÍAS D, PETERS F. Turbulence increases the average settling velocity of phytoplankton cells[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(51):17720-17724
    [11] 王建慧. 流速对藻类生长影响试验及应用研究[D]. 北京:清华大学,2012
    [12] 王利利. 水动力条件下藻类生长相关影响因素研究[D]. 重庆:重庆大学,2006
    [13] 颜润润, 逄勇, 王珂,等. 不同培养条件下扰动对两种淡水藻生长的影响[J]. 环境科学与技术,2007,30(3):10-12
    [14] 廖平安, 胡秀琳. 流速对藻类生长影响的试验研究[J]. 北京水利,2005(2):12-14
    [15] 王红萍, 夏军, 谢平,等. 汉江水华水文因素作用机理:基于藻类生长动力学的研究[J]. 长江流域资源与环境,2004,13(3):282-285
    [16] 龙天渝, 蒙国湖, 吴磊,等. 水动力条件对嘉陵江重庆主城段藻类生长影响的数值模拟[J]. 环境科学,2010,31(7):1498-1503
    [17] 高学平, 赵耀南, 陈弘. 水库分层取水水温模型试验的相似理论[J]. 水利学报,2009,40(11):1374-1380
    [18] SPELLERBERG I F, FEDOR P J. A tribute to Claude Shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon-Wiener’ index[J]. Global Ecology & Biogeography,2003,12(3):177-179
    [19] 中国环境监测总站.水环境监测技术[M].北京:中国环境科学出版社,2014
    [20] 郑丙辉, 田自强, 张雷,等. 太湖西岸湖滨带水生生物分布特征及水质营养状况[J]. 生态学报,2007,27(10):4214-4223
    [21] PHLIPS J E,HENDRICKSON O H N J,QUINLAN L E, et al. Meteorological influences on algal bloom potential in a nutrient-rich blackwater river[J]. Freshwater Biology,2007,52(11):2141-2155
  • 加载中
计量
  • 文章访问数:  2188
  • HTML全文浏览数:  1911
  • PDF下载数:  386
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-06-09
  • 刊出日期:  2017-12-07
魏桢, 贾海峰, 姜其贵, 孟德娟, 杨舒媛. 再生水补水河道中流速对浮游藻类生长影响的模拟实验[J]. 环境工程学报, 2017, 11(12): 6540-6546. doi: 10.12030/j.cjee.201703234
引用本文: 魏桢, 贾海峰, 姜其贵, 孟德娟, 杨舒媛. 再生水补水河道中流速对浮游藻类生长影响的模拟实验[J]. 环境工程学报, 2017, 11(12): 6540-6546. doi: 10.12030/j.cjee.201703234
WEI Zhen, JIA Haifeng, JIANG Qigui, MENG Dejuan, YANG Shuyuan. Simulation experiment of phytoplankton growth induced by flow velocity in rivers replenished with reclaimed water[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6540-6546. doi: 10.12030/j.cjee.201703234
Citation: WEI Zhen, JIA Haifeng, JIANG Qigui, MENG Dejuan, YANG Shuyuan. Simulation experiment of phytoplankton growth induced by flow velocity in rivers replenished with reclaimed water[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6540-6546. doi: 10.12030/j.cjee.201703234

再生水补水河道中流速对浮游藻类生长影响的模拟实验

  • 1. 清华大学环境学院, 北京 100084
  • 2. 北京市城市规划设计研究院, 北京 100045
基金项目:

北京市规划委员会项目(20162001285)

摘要: 以再生水为主要补给水源的城市河道中,避免藻类水华是河道调控的重点之一。实际调控中,在控制藻类数量增长的同时,还应关注藻类群落的多样性,降低由于优势藻种的生长而导致水华的可能。在3种水深下各设置7组流速条件,利用环形水槽模拟研究不同组合条件下河道单元水体中浮游藻类的生长情况,通过计算藻类比生长率和藻类群落的香浓-威纳(Shannon-Wiener)指数描述藻类增长速率和群落生物多样性,从而对浮游藻类生长情况进行综合评价。实验结果显示,相同水深下浮游藻类比生长率在0.05~0.08 m·s-1流速范围内出现最大值,而适当降低水深有利于提高水体浮游藻类的群落多样性。综合分析比生长率和多样性得到,在0~0.05 m·s-1流速附近产生水华的潜势较高。

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回