UV/H2O2降解水中磺胺嘧啶影响因素及机理

苟玺莹, 张盼月, 钱锋, 王培良, 赵春晓, 宋永会. UV/H2O2降解水中磺胺嘧啶影响因素及机理[J]. 环境工程学报, 2017, 11(11): 5810-5819. doi: 10.12030/j.cjee.201704031
引用本文: 苟玺莹, 张盼月, 钱锋, 王培良, 赵春晓, 宋永会. UV/H2O2降解水中磺胺嘧啶影响因素及机理[J]. 环境工程学报, 2017, 11(11): 5810-5819. doi: 10.12030/j.cjee.201704031
GOU Xiying, ZHANG Panyue, QIAN Feng, WANG Peiliang, ZHAO Chunxiao, SONG Yonghui. Influencing factors and mechanism of sulfadiazine degradation by UV/H2O2[J]. Chinese Journal of Environmental Engineering, 2017, 11(11): 5810-5819. doi: 10.12030/j.cjee.201704031
Citation: GOU Xiying, ZHANG Panyue, QIAN Feng, WANG Peiliang, ZHAO Chunxiao, SONG Yonghui. Influencing factors and mechanism of sulfadiazine degradation by UV/H2O2[J]. Chinese Journal of Environmental Engineering, 2017, 11(11): 5810-5819. doi: 10.12030/j.cjee.201704031

UV/H2O2降解水中磺胺嘧啶影响因素及机理

  • 基金项目:

    国家水体污染控制与治理科技重大专项(2012ZX07202-005)

  • 中图分类号: X703

Influencing factors and mechanism of sulfadiazine degradation by UV/H2O2

  • Fund Project:
  • 摘要: 利用UV/H2O2光氧化反应器降解水中的磺胺嘧啶,考察了H2O2投量、pH值、紫外功率等因素对去除效果的影响,同时对反应动力学及降解产物进行了分析。结果表明,在紫外辐照与H2O2氧化共同作用下,UV/H2O2降解水中磺胺嘧啶效果显著,去除率达90%以上,其降解过程符合一级反应动力学模型(R2=0.991 2)。H2O2投量与磺胺嘧啶降解速率常数具有良好的线性关系,H2O2投量由0.03增大至1.50 mmol·L-1,反应速率常数由0.048 2增大至0.359 9 min-1;同时,随着紫外灯功率由5增大至15 W,反应速率常数由0.066 2增大至0.163 1 min-1;随着初始磺胺嘧啶浓度由0.02增加至0.08 mmol·L-1,反应速率常数由0.251 7逐渐降低至0.046 8 min-1;pH由3.0升高至7.0,反应速率常数由0.070 2增大至0.102 3 min-1,当pH继续增大时,反应速率常数反而降低。根据液相色谱/质谱(LC/MS)对中间产物分析,UV/H2O2降解磺胺嘧啶生成质荷比(m/z)为173、186和200的对氨基苯磺酸等中间产物,推测S-N键和C-N键被打开,这些中间产物可进一步被降解,但TOC去除率仅为7%,表明磺胺嘧啶仅部分被矿化。UV/H2O2工艺处理磺胺嘧啶的电能效率(EEO)采用每一对数减少级电能输入进行评价,优化条件下电能效率为0.078 kWh·m-3,可为实际工程应用提供参考。
  • 加载中
  • [1] 冯欣欣,杜尔登,郭迎庆,等. UV/H2O2降解羟苯甲酮反应动力学及影响因素[J]. 环境科学,2015,36(6):2129-2137
    [2] 鲍晓磊,强志民,贲伟伟,等. 磁性纳米复合材料CoFeM48对水中磺胺类抗生素的吸附去除研究[J]. 环境科学学报,2013,33(2):401-407
    [3] BIALK-BIELINSKA A,STOLTE S,ARNING J,et al. Ecotoxicity evaluation of selected sulfonamides[J]. Chemosphere,2011,85(6):928-933
    [4] BARAN W,ADAMEK E,ZIEMIANSKA J,et al. Effects of the presence of sulfonamides in the environment and their influence on human health[J]. Journal of Hazardous Materials,2011,196(1):1-15
    [5] FUKAHORI S,FUJIWARA T. Photocatalytic decomposition behavior and reaction pathway of sulfamethazine antibiotic using TiO2[J]. Journal of Environmental Management,2015,157:103-110
    [6] JI Y,DONG C,KONG D,et al. Heat-activated persulfate oxidation of atrazine:Implications for remediation of groundwater contaminated by herbicides[J]. Chemical Engineering Journal,2015,263:45-54
    [7] TROVÓ A G,NOGUEIRA R F P,AGVERA A,et al. Paracetamol degradation intermediates and toxicity during photo-Fenton treatment using different iron species[J]. Water Research,2012,46(16):5374-5380
    [8] 李青松,高乃云,马晓雁,等. UV/H2O2工艺降解水中17α-乙炔基雌二醇[J]. 中国环境科学,2006,26(5):515-518
    [9] KIM I,YAMASHITA N,TANAKA H. Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan[J]. Journal of Hazardous Materials,2009,166(2/3):1134-1140
    [10] LIAO Q,JI F,LI J C,et al. Decomposition and mineralization of sulfaquinoxaline sodium during UV/H2O2 oxidation processes[J]. Chemical Engineering Journal,2016,284:494-502
    [11] ZHANG R C,YANG Y K,HUANG C H,et al. Kinetics and modeling of sulfonamide antibiotic degradation in wastewater and human urine by UV/H2O2 and UV/PDS[J]. Water Research,2016,103:283-292
    [12] GARCÍA-GALÁN M J,ANFRUNS A,GONZALEZ-OLMOS R,et al. Advanced oxidation of the antibiotic sulfapyridine by UV/H2O2:Characterization of its transformation products and ecotoxicological implications[J]. Chemosphere,2016,147:451-459
    [13] 魏红,杨小雨, 李克斌,等. UVA紫外辐射下UV/H2O2/KI降解水中磺胺嘧啶[J]. 环境科学学报,2016,36(5):1697-1703
    [14] ZOU X,ZHOU T,MAO J,et al. Synergistic degradation of antibiotic sulfadiazine in a heterogeneous ultrasound-enhanced Fe0/persulfate Fenton-like system[J]. Chemical Engineering Journal,2014,257(6):36-44
    [15] BEHNAJADY M A,VAHID B,MODIRSHAHLA N,et al. Evaluation of electrical energy per order (EEO) with kinetic modeling on the removal of malachite green by US/UV/H2O2 process[J]. Desalination,2009,249(1):99-103
    [16] BELTRAN F J,OVEJERO G,GARCIAARAYA J F,et al. Oxidation of polynuclear aromatic hydrocarbons in water.2.UV radiation and ozonation in the presence of UV radiation[J]. Industrial & Engineering Chemistry Research,1995,34(5):1607-1615
    [17] FANG J Y,LING L,SHANG C. Kinetics and mechanisms of pH-dependent degradation of halonitromethanes by UV photolysis[J]. Water Research,2013,47(3):1257-1266
    [18] XIAO Y J,ZHANG L F,YUE J Q,et al. Kinetic modeling and energy efficiency of UV/H2O2 treatment of iodinated trihalomethanes[J]. Water Research,2015,75:259-269
    [19] GONG P,YUAN H X,ZHAI P P,et al.Investigation on the degradation of benzophenone-3 by UV/H2O2 in aqueous solution[J]. Chemical Engineering Journal,2015,277:97-103
    [20] 汪力,高乃云,魏宏斌,等. 饮用水中内分泌干扰物阿特拉津UV光氧化研究[J].环境科学,2006,27(6):1144-1149
    [21] 张薛,赵璇. UV/H2O2氧化处理水中去污剂[J]. 环境科学学报,2015,35(3):750-755
    [22] CHRISTENSEN H,SEHESTED K,CORFITZEN H. Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures[J]. Journal of Physical Chemistry,1982,86(8):1588-1590
    [23] BUXTON G V,GREENSTOCK C L,HELMAN W P,et al. Critical review of rate constants for reactions of hydrated electrons,hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution[J]. Journal of Physical & Chemical Reference Data,1988,17(2):513-886
    [24] KIM I Y,KIM M K,YOON Y,et al. Kinetics and degradation mechanism of clofibric acid and diclofenac in UV photolysis and UV/H2O2 reaction[J]. Desalination and Water Treatment,2014,52(31/32/33):6211-6218
    [25] 潘诗卉. 磺胺嘧啶在紫外辐射下的降解机理探讨[D]. 上海:上海师范大学,2014
    [26] AHMED M M,BARBATI S,DOUMENQ P,et al. Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination[J]. Chemical Engineering Journal,2012,197(14):440-447
  • 加载中
计量
  • 文章访问数:  3103
  • HTML全文浏览数:  2779
  • PDF下载数:  343
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-04-28
  • 刊出日期:  2017-11-15
苟玺莹, 张盼月, 钱锋, 王培良, 赵春晓, 宋永会. UV/H2O2降解水中磺胺嘧啶影响因素及机理[J]. 环境工程学报, 2017, 11(11): 5810-5819. doi: 10.12030/j.cjee.201704031
引用本文: 苟玺莹, 张盼月, 钱锋, 王培良, 赵春晓, 宋永会. UV/H2O2降解水中磺胺嘧啶影响因素及机理[J]. 环境工程学报, 2017, 11(11): 5810-5819. doi: 10.12030/j.cjee.201704031
GOU Xiying, ZHANG Panyue, QIAN Feng, WANG Peiliang, ZHAO Chunxiao, SONG Yonghui. Influencing factors and mechanism of sulfadiazine degradation by UV/H2O2[J]. Chinese Journal of Environmental Engineering, 2017, 11(11): 5810-5819. doi: 10.12030/j.cjee.201704031
Citation: GOU Xiying, ZHANG Panyue, QIAN Feng, WANG Peiliang, ZHAO Chunxiao, SONG Yonghui. Influencing factors and mechanism of sulfadiazine degradation by UV/H2O2[J]. Chinese Journal of Environmental Engineering, 2017, 11(11): 5810-5819. doi: 10.12030/j.cjee.201704031

UV/H2O2降解水中磺胺嘧啶影响因素及机理

  • 1.  湖南大学环境科学与工程学院, 长沙 410082
  • 2.  中国环境科学研究院城市水环境科技创新基地, 北京 100012
  • 3.  环境生物与控制教育部重点实验室(湖南大学), 长沙 410082
基金项目:

国家水体污染控制与治理科技重大专项(2012ZX07202-005)

摘要: 利用UV/H2O2光氧化反应器降解水中的磺胺嘧啶,考察了H2O2投量、pH值、紫外功率等因素对去除效果的影响,同时对反应动力学及降解产物进行了分析。结果表明,在紫外辐照与H2O2氧化共同作用下,UV/H2O2降解水中磺胺嘧啶效果显著,去除率达90%以上,其降解过程符合一级反应动力学模型(R2=0.991 2)。H2O2投量与磺胺嘧啶降解速率常数具有良好的线性关系,H2O2投量由0.03增大至1.50 mmol·L-1,反应速率常数由0.048 2增大至0.359 9 min-1;同时,随着紫外灯功率由5增大至15 W,反应速率常数由0.066 2增大至0.163 1 min-1;随着初始磺胺嘧啶浓度由0.02增加至0.08 mmol·L-1,反应速率常数由0.251 7逐渐降低至0.046 8 min-1;pH由3.0升高至7.0,反应速率常数由0.070 2增大至0.102 3 min-1,当pH继续增大时,反应速率常数反而降低。根据液相色谱/质谱(LC/MS)对中间产物分析,UV/H2O2降解磺胺嘧啶生成质荷比(m/z)为173、186和200的对氨基苯磺酸等中间产物,推测S-N键和C-N键被打开,这些中间产物可进一步被降解,但TOC去除率仅为7%,表明磺胺嘧啶仅部分被矿化。UV/H2O2工艺处理磺胺嘧啶的电能效率(EEO)采用每一对数减少级电能输入进行评价,优化条件下电能效率为0.078 kWh·m-3,可为实际工程应用提供参考。

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回