水环境中基于分离-富集的金属形态分析方法研究进展

吴乐兰, 仇荣亮, 赵春梅. 水环境中基于分离-富集的金属形态分析方法研究进展[J]. 环境化学, 2019, (11): 2467-2480. doi: 10.7524/j.issn.0254-6108.2018121201
引用本文: 吴乐兰, 仇荣亮, 赵春梅. 水环境中基于分离-富集的金属形态分析方法研究进展[J]. 环境化学, 2019, (11): 2467-2480. doi: 10.7524/j.issn.0254-6108.2018121201
WU Lelan, QIU Rongliang, ZHAO Chunmei. Separation-preconcentration based metal speciation analysis in aquatic environment[J]. Environmental Chemistry, 2019, (11): 2467-2480. doi: 10.7524/j.issn.0254-6108.2018121201
Citation: WU Lelan, QIU Rongliang, ZHAO Chunmei. Separation-preconcentration based metal speciation analysis in aquatic environment[J]. Environmental Chemistry, 2019, (11): 2467-2480. doi: 10.7524/j.issn.0254-6108.2018121201

水环境中基于分离-富集的金属形态分析方法研究进展

    通讯作者: 赵春梅, E-mail: zhaochm3@mail.sysu.edu.cn
  • 基金项目:

    国家自然科学青年基金(21607178)资助.

Separation-preconcentration based metal speciation analysis in aquatic environment

    Corresponding author: ZHAO Chunmei, zhaochm3@mail.sysu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(21607178).
  • 摘要: 金属的形态对其在环境介质中的迁移转化、生物有效性和毒性具有重要影响.目前认为,金属的自由离子态和不稳定络合态是具有潜在生物有效性的形态,而纳米颗粒的存在使得具有生物有效性的金属形态变得更为复杂.痕量金属和纳米颗粒在天然水环境中的含量较低,大部分检测方法无法达到检测限要求.基于分离-富集的金属形态分析方法因检测限低、操作简单、结果可靠等优点被广泛用于环境中痕量金属及纳米颗粒存在下金属的形态分析.本文从原理、应用条件和优缺点等方面对梯度扩散薄膜技术、唐南渗析膜技术、离子交换技术和渗透液膜技术等基于分离-富集的金属形态分析方法进行综述,为水环境中金属形态分析方法的选择提供了参考和依据.
  • 加载中
  • [1] TEMPLETON D M, ARIESE F, CORNELIS R, et al. Guidelines for terms related to chemical speciation and fractionation of elements. Definitions structural aspects and methodological approaches (IUPAC Recommendations 2000)[J]. Pure and Applied Chemistry, 2000, 72(8):1453-1470.
    [2] TEMPLETON D M, FUJISHIRO H. Terminology of elemental speciation-An IUPAC perspective[J]. Coordination Chemistry Reviews, 2017, 352:424-431.
    [3] SLAVEYKOVA V I, WILKINSON K J. Predicting the bioavailability of metals and metal complexes:critical review of the Biotic Ligand Model[J]. Environmental Chemistry, 2005, 2(1):9-24.
    [4] ZHAO C M, CAMPBELL P G C, WILKINSON K J. When are metal complexes bioavailable?[J]. Environmental Chemistry, 2016, 13(3):425-433.
    [5] WILKINSON K J, BUFFLE J. Critical evaluation of physicochemical parameters and processes for modelling the biological uptake of trace metals in environmental (aquatic) systems. In Physicochemical Kinetics and Transport at Biointerfaces[M]. England:John Wiley & Sons, 2004:446-533.
    [6] WORMS I, SIMON D F, HASSLER C S, et al. Bioavailability of trace metals to aquatic microorganisms:Importance of chemical, biological and physical processes on biouptake[J]. Biochimie, 2006, 88(11):1721-1731.
    [7] CAMPBELL P G C, ERRECALDE O, FORTIN C, et al. Metal bioavailability to phytoplankton-applicability of the biotic ligand model[J]. Comparative Biochemistry and Physiology Part C, 2002, 133(1-2):189-206.
    [8] PAQUIN P R, GORSUCH J W, APTE S. The biotic ligand model:A historical overview[J]. Comparative Biochemistry and Physiology Part C, 2002, 133(1-2):3-35.
    [9] CAMPBELL P G C. Interactions between trace metals and aquatic organisms-A critique of the free-ion activity model. In Metal speciation and bioavailability in aquatic systems[M]. New York:John Wiley. 1995:45-102.
    [10] BUFFLE J, ZHANG Z S, STARTCHEV K. Metal flux and dynamic speciation at (bio)interfaces part Ⅰ critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances[J]. Environmental Science & Technology, 2007, 41(22):7609-7620.
    [11] GONZALVEZ A, CERVERA M L, ARMENTA S, et al. A review of non-chromatographic methods for speciation analysis[J]. Analytica Chimica Acta, 2009, 636(2):129-157.
    [12] LOFTS S, TIPPING E. Assessing WHAM/Model Ⅶ against field measurements of free metal ion concentrations:Model performance and the role of uncertainty in parameters and inputs[J]. Environmental Chemistry, 2011, 8(5):501-516.
    [13] BAKEN S, DEGRYSE F, VERHEYEN K, et al. Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands[J]. Environmental Science & Technology, 2017, 45(7):2584-2590.
    [14] SHAHID M, DUMAT C, ASLAM M, et al. Assessment of lead speciation by organic ligands using speciation models[J]. Chemical Speciation & Bioavailability, 2012, 24(4):248-252.
    [15] WORMS I A, WILKINSON K J. Determination of Ni2+ using an equilibrium ion exchange technique:Important chemical factors and applicability to environmental samples[J]. Analytica Chimica Acta, 2008, 616(1):95-102.
    [16] LEGUAY S B, CAMPBELL P G C, FORTIN C. Determination of the free-ion concentration of rare earth elements by an ion-exchange technique:Implementation, evaluation and limits[J]. Environmental Chemistry, 2016, 13(3):478-488.
    [17] TIPPING E, LOFTS S, SONKE J E. Humic ion-binding model Ⅶ:A revised parameterisation of cation-binding by humic substances[J]. Environmental Chemistry, 2011, 8(3):225-235.
    [18] RITCHIE J D, PERDUE E M. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter[J]. Geochimica et Cosmochimica Acta, 2003, 67(1):85-96.
    [19] MARSAC R, DAVRANCHE M, GRUAU G, et al. Aluminium competitive effect on rare earth elements binding to humic acid[J]. Geochimica et Cosmochimica Acta, 2012, 89(15):1-9.
    [20] JONES M N, BRYAN N D. Colloidal properties of humic substances[J]. Advances in Colloid and Interface Science, 1998, 78(1):1-48.
    [21] PESAVENTO M, ALBERTI G, BIESUZ R. Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters:A review[J]. Analytica Chimica Acta, 2009, 631(2):129-141.
    [22] BUFFLE J, TERCIER-WAEBER M L. Voltammetric environmental trace-metal analysis and speciation:from laboratory to in situ measurements[J]. Trends in Analytical Chemistry, 2005, 24(3):172-191.
    [23] NIYOGI S, WOOD C M. Biotic Ligand Model, a flexible tool for developing site-specific water quality guidelines for metals[J]. Environmental Science & Technology, 2004, 38(23):6177-6192.
    [24] LEEUWEN H P V, TOWN R M, BUFFLE J, et al. Dynamic speciation analysis and bioavailability of metals in aquatic systems[J]. Environmental Science & Technology, 2005, 39(22):8546-8556.
    [25] BUFFLE J. WILKINSON K J, LEEUWEN H P V. Chemodynamics and bioavailability in natural waters[J]. Environmental Science & Technology, 2009, 43(19):7170-7174.
    [26] DOMINGOS R F, G LABERT A, CARREIRA S, et al. Metals in the aquatic environment-Interactions and implications for the speciation and bioavailability:A critical overview[J]. Aquatic Geochemistry, 2015, 21(2-4):231-257.
    [27] ZHANG H, DAVISON W. Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution[J]. Analytical Chemistry, 1995,67(19):3391-3400.
    [28] TORRE M C A, BEAULIEU P Y, TESSIER A. In situ measurement of trace metals in lakewater using the dialysis and DGT techniques[J]. Analytica Chimica Acta, 2000, 418(1):53-68.
    [29] SCALLY S, DAVISON W, ZHANG H. In situ measurements of dissociation kinetics and labilities of metal complexes in solution using DGT[J]. Environmental Science & Technology, 2003, 37(7):1379-1384.
    [30] WARNKEN K W, DAVISON W, ZHANG H, et al. In situ measurements of metal complex exchange kinetics in freshwater[J]. Environmental Science & Technology, 2007, 41(9):3179-3185.
    [31] URIBE R, MONGIN S, PUY J, et al. Contribution of partially labile complexes to the DGT metal flux[J]. Environmental Science & Technology, 2011, 45(12):5317-5322.
    [32] LEVY J L, ZHANG H, DAVISON W, et al. Kinetic signatures of metals in the presence of Suwannee River fulvic acid[J]. Environmental Science & Technology, 2012, 46(6):3335-3342.
    [33] WARNKEN K W, DAVISON W, ZHANG H. Interpretation of in situ speciation measurements of inorganic and organically complexed trace metals in freshwater by DGT[J]. Environmental Science & Technology, 2008, 42(18):6903-6909.
    [34] MONGIN S, URIBE R, PUY J, et al. Key role of the resin layer thickness in the lability of complexes measured by DGT[J]. Environmental Science & Technology, 2011, 45(11):4869-4875.
    [35] LEHTO N J, DAVISON W, ZHANG H, et al. An evaluation of DGT performance using a dynamic numerical model[J]. Environmental Science & Technology, 2006, 40(20):6368-6376.
    [36] SHAFAEI -ARVAJEH M R, LEHTO N, GARMO O A, et al. Kinetic studies of Ni organic complexes using diffusive gradients in thin films (DGT) with double binding layers and a dynamic numerical model[J]. Environmental Science & Technology, 2013, 47(1):463-470.
    [37] ZHANG H, DAVISON W. Direct in situ measurements of labile inorganic and organic bound metal species in synthetic solutions and natural waters using diffusive gradients in thin films[J]. Analytical Chemistry, 2000, 72(18):4447-4457.
    [38] SCALLY S, DAVISON W, ZHANG H. Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films[J]. Analytica Chimica Acta, 2006, 558(1):222-229.
    [39] UNSWORTH E R, ZHANG H, DAVISON W. Use of diffusive gradients in thin films to measure cadmium speciation in solutions with synthetic and natural ligands comparison with model predictions[J]. Environmental Science & Technology, 2005, 39(2):624-630.
    [40] SLAVERYKOVA V I, KARADJOVA I B, KARADJOV M, et al. Trace metal speciation and bioavailability in surface waters of the black sea coastal area evaluated by HF-PLM and DGT[J]. Environmental Science & Technology, 2009, 43(6):1798-1803.
    [41] GIMPEL J, ZHANG H, DAVISON W, et al. In situ trace metal speciation in lake surface waters using DGT, dialysis, and filtration[J]. Environmental Science & Technology, 2003, 37(1):138-146.
    [42] WARNKEN K W, LAWLOR A J, LOFTS S, et al. In situ speciation measurements of trace metals in headwater streams[J]. Environmental Science & Technology, 2009, 43(19):7230-7236.
    [43] LEERMAKERS M, GAO Y, GABELLE C, et al. Determination of high resolution pore water profiles of trace metals in sediments of the Rupel River (Belgium) using Det (diffusive equilibrium in thin films) and DGT (diffusive gradients in thin films) Techniques[J]. Water, Air, and Soil Pollution, 2005, 166(1-4):265-286.
    [44] JAUME P, JOSEP G, SARA C, et al. Measurement of metals using DGT:Impact of ionic strength and kinetics of dissociation of complexes in the resin domain[J]. Analytical Chemistry, 2014, 86(15):7740-7748.
    [45] ALTIER A, JIM NEZ-PIEDRAHITA M, REY-CASTRO C, et al. Accumulation of Mg to diffusive gradients in thin films (DGT) devices:Kinetic and thermodynamic effects of the ionic strength[J]. Analytical Chemistry, 2016, 88(20):10245-10251.
    [46] MONGIN S, URIBE R, REY-CASTRO C, et al. Limits of the linear accumulation regime of DGT sensors[J]. Environmental Science & Technology, 2013, 47(18):10438-10445.
    [47] GONTIJO E S, WATANABE C H, MONTEIRO A S, et al. Distribution and bioavailability of arsenic in natural waters of a mining area studied by ultrafiltration and diffusive gradients in thin films[J]. Chemosphere, 2016, 164:290-298.
    [48] CUSNIR R, STEINMANN P, BOCHUD F, et al. A DGT technique for plutonium bioavailability measurements[J]. Environmental Science & Technology, 2014, 48(18):10829-10834.
    [49] CUSNIR R, JACCARD M, BAILAT C, et al. Probing the kinetic parameters of plutonium-naturally occurring organic matter interactions in freshwaters using the diffusive gradients in thin films technique[J]. Environmental Science & Technology, 2016, 50(10):5103-5110.
    [50] LUCAS A R, REID N, SALMON S U, et al. Quantitative assessment of the distribution of dissolved Au, As and Sb in groundwater using the diffusive gradients in thin films technique[J]. Environmental Science & Technology, 2014, 48(20):12141-12149.
    [51] SHI Y X, GU GUEN C. In situ monitoring of labile vanadium in the Mackenzie River Basin (Canada) using diffusive gradients in thin films[J]. Water, Air, & Soil Pollution, 2017, 228(11):420.
    [52] PAN Y, GUAN D X, ZHAO D, et al. Novel speciation method based on diffusive gradients in thin-films for in situ measurement of Cr in aquatic systems[J]. Environmental Science & Technology, 2015, 49(24):14267-14273.
    [53] NDU U, CHRISTENSEN G A, RIVERA N A, et al. Quantification of mercury bioavailability for methylation using diffusive gradient in thin-film samplers[J]. Environmental Science & Technology, 2018, 52(15):8521-8529.
    [54] PHAM A L-T, JOHNSON C, MANLEY D, et al. Influence of sulfide nanoparticles on dissolved mercury and zinc quantification by diffusive gradient in thin-film passive samplers[J]. Environmental Science & Technology, 2015, 49(21):12897-12903.
    [55] PHILIPPS R R, XU X, MILLS G L, et al. Evaluation of diffusive gradients in thin films for prediction of copper bioaccumulation by yellow lampmussel (Lampsilis cariosa) and fathead minnow (Pimephales promelas)[J]. Environmental Toxicology and Chemistry, 2018, 37(6):1535-1544.
    [56] VALENCIA-AVELLAN M, SLACK R, STOCKDALE A, et al. Evaluating water quality and ecotoxicology assessment techniques using data from a lead and zinc effected upland limestone catchment[J]. Water Research, 2018, 128:49-60.
    [57] WENG L, ALONSO VEGA F, VAN RIEMSDIJK W H. Strategies in the application of the Donnan membrane technique[J]. Environmental Chemistry, 2011, 8(5):466-474.
    [58] CHITO D, WENG L, GALCERAN J, et al. Determination of free Zn2+ concentration in synthetic and natural samples with AGNES (Absence of gradients and nernstian equilibrium stripping) and DMT (Donnan membrane technique)[J]. The Science of the Total Environment, 2012, 421:238-244.
    [59] RYAN B M, KIRBY J K, DEGRYSE F, et al. Copper isotope fractionation during equilibration with natural and synthetic ligands[J]. Environmental Science & Technology, 2014, 48(15):8620-8626.
    [60] PAN Y, KOOPMANS G F, BONTEN L T C, et al. In-situ measurement of free trace metal concentrations in a flooded paddy soil using the Donnan Membrane Technique[J]. Geoderma, 2015, 241:59-67.
    [61] REN Z-L, TELLA M, BRAVIN M N, et al. Effect of dissolved organic matter composition on metal speciation in soil solutions[J]. Chemical Geology, 2015, 398:61-69.
    [62] JONES A M, XUE Y, KINSELA A S, et al. Donnan membrane speciation of Al, Fe, trace metals and REEs in coastal lowland acid sulfate soil-impacted drainage waters[J]. Science of the Total Environment, 2016, 547:104-113.
    [63] LAO M, COMPANYS E, WENG L, et al. Speciation of Zn, Fe, Ca and Mg in wine with the Donnan membrane technique[J]. Food Chemistry, 2018, 239:1143-1150.
    [64] TEMMINGHOFF E J M, PLETTE A C C, ECK R V, et al. Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan membrane technique[J]. Analytica Chimica Acta, 2000, 417(2):149-157.
    [65] WENG L P, RIEMSDIJK W H V, TEMMINGHOFF E J M. Kinetic aspects of Donnan membrane technique for measuring free trace cation concentration[J]. Analytical Chemistry, 2005, 77(9):2852-2861.
    [66] KALIS E J J, WENG L P, TEMMINGHOFF, et al. Measuring free metal ion concentrations in multicomponent solutions using the Donnan membrane technique[J]. Analytical Chemistry, 2007, 79(4):1555-1563.
    [67] MARANG L, REILLER P, PEPE M, et al. Donnan membrane approach:From equilibrium to dynamic speciation[J]. Environmental Science & Technology, 2006, 40(17):5496-5501.
    [68] KALIS E J J, WENG L P, DOUSMA F, et al. Measuring free metal ion concentrations in situ in natural waters using the Donnan membrane technique[J]. Environmental Science & Technology, 2006, 40(3):955-961.
    [69] WENG L P, RIEMSDIJK W H V, TEMMINGHOFF E J M. Effects of lability of metal complex on free ion measurement using DMT[J]. Environmental Science & Technology, 2010, 44(7):2529-2534.
    [70] VEGA F A, WENG L. Speciation of heavy metals in River Rhine[J]. Water Research, 2013, 47(1):363-372.
    [71] GROENENBERG J E, KOOPMANS G F, COMANS R N J. Uncertainty analysis of the Nonideal competitive adsorption-Donnan model:Effects of dissolved organic matter variability on predicted metal speciation in soil solution[J]. Environmental Science & Technology, 2010, 44(4):1340-1346.
    [72] GAO R, TEMMINGHOFF E J M, VAN LEEUWEN H P, et al. Simultaneous determination of free calcium, magnesium, sodium and potassium ion concentrations in simulated milk ultrafiltrate and reconstituted skim milk using the Donnan membrane technique[J]. International Dairy Journal, 2009, 19(8):431-436.
    [73] PARAT C, PINHEIRO J P. ISIDORE, a probe for in situ trace metal speciation based on Donnan membrane technique with related electrochemical detection part 1:Equilibrium measurements[J]. Analytica Chimica Acta, 2015, 896:1-10.
    [74] FORTIN C, CAMPBELL P G C. An ion-exchange technique for free-metal ion measurements (Cd2+, Zn2+):Applications to complex aqueous media[J]. International Journal of Environmental Analytical Chemistry, 1998, 72(3):173-194.
    [75] FORTIN C, COUILLARD Y, VIGNEAULT B, et al. Determination of free Cd, Cu and Zn concentrations in Lake Waters by in situ diffusion followed by column equilibration ion-exchange[J]. Aquatic Geochemistry, 2010, 16(1):151-172.
    [76] CREMAZY A, LECLAIR S, MUELLER K K, et al. Development of an in situ ion-exchange technique for the determination of free Cd, Co, Ni, and Zn concentrations in freshwaters[J]. Aquatic Geochemistry, 2015, 21(2-4):259-279.
    [77] NDUWAYEZU I, MOSTAFAVIRAD F, HADIOUI M, et al. Speciation of a lanthanide (Sm) using an ion exchange resin[J]. Analytical Methods, 2016, 8(37):6774-6781.
    [78] GE Y, SAUV S, HENDERSHOT W H. Equilibrium speciation of cadmium, copper, and Lead in soil solutions[J]. Communications in Soil Science and Plant Analysis, 2005, 36(11-12):1537-1556.
    [79] FORTIN C, CARON F. Complexing capacity of low-level radioactive waste leachates for 60Co and 109Cd using an ion-exchange technique[J]. Analytica Chimica Acta, 2000, 410:107-117.
    [80] DOIG L E, LIBER K. Nickel speciation in the presence of different sources and fractions of dissolved organic matter[J]. Ecoto Icology and Environmental Safety, 2007, 66(2):169-177.
    [81] ROWELL J A, FILLION M A, SMITH S, et al. Determination of the speciation and bioavailability of samarium to Chlamydomonas reinhardtii in the presence of natural organic matter[J]. Environmental Toxicology and Chemistry, 2018, 36(6):1623-1631.
    [82] ERDEMOGLU S B, PYRZYNISKA K, GUCER S. Speciation of aluminum in tea infusion by ion-exchange resins and flame AAS detection[J]. Analytica Chimica Acta, 2000, 411(1-2):81-89.
    [83] PARTHASARATHY N, BUFFLE J. Supported liquid membrane for analytical separation of transition metal ions. Part Ⅱ. Appraisal of lipophilic 1,10-didecyl-1,10-diaza-18-crown-6 as metal ion carrier in the membrane[J]. Analytica Chimica Acta, 1991, 254(1-2):9-19.
    [84] PARTHASARATHY N, BUFFLE J. Supported liquid membrane for analytical separation of transition metal ions. Part Ⅰ. Complexation properties of 1,10-didecyl-1,10-diaza-18-crown-6[J]. Analytica Chimica Acta, 1991, 254(1-2):1-7.
    [85] ROMAN M F S, BRINGAS E, IBANEZ R, et al. Liquid membrane technology, fundamentals and review of its applications[J]. Emerging Technologies, 2010, 85(1):2-10.
    [86] NDUNGU K, HURST M P, BRULAND K W. Comparison of copper speciation in estuarine water measured using anlytical voltammetry and supported liquid membrane techniques[J]. Environmental Science & Technology, 2005, 39(3):3166-3175.
    [87] TOMASZEWSKI L, BUFFLE J. Theoretical and analytical characterization of a flow-through permeation liquid membrane with controlled fFlux for metal speciation measurements[J]. Analytical Chemistry, 2003, 75(4):893-900.
    [88] ZHANG Z, BUFFLE J, LEEUWEN H P. Roles of dynamic metal speciation and membrane permeability in metal flux through lipophilic membranes:general theory and experimental validation with nonlabile complexes[J]. Langmuir, 2007, 23(9):5216-5226.
    [89] PARTHASARATHY N, PELLETIER M, BUFFLE J. Permeation liquid membrane for trace metal speciation in natural waters[J]. Journal of Chromatography A, 2004, 1025(1):33-40.
    [90] DADFARNIA S, HAJI SHABANI A M. Recent development in liquid phase microextraction for determination of trace level concentration of metals-a review[J]. Analytica Chimica Acta, 2010, 658(2):107-119.
    [91] ZHANG Z, BUFFLE J, LEEUWEN H P. Roles of metal ion complexation and membrane permeability in the metal flux through lipophilic membranes. Labile complexes at permeation liquid membranes[J]. Analytical Chemistry, 2006, 78(16):5693-5703.
    [92] BAUTISTA-FLORES A N, DE SAN MIGUEL E R, GYVES J, et al. Nickel (Ⅱ) preconcentration and speciation analysis during transport from aqueous solutions using a Hollow-fiber permeation liquid membrane (HFPLM) device[J]. Membranes, 2011, 1(3):217-231.
    [93] BAUTISTA-FLORES A N, RODR GUEZ DE SAN MIGUEL E, DE GYVES J, et al. Optimization, evaluation, and characterization of a hollow fiber supported liquid membrane for sampling and speciation of lead(Ⅱ) from aqueous solutions[J]. Journal of Membrane Science, 2010, 363(1-2):180-187.
    [94] AOUARRAM A, GALINDO-RIA O M D, GARC A-VARGAS M, et al. A permeation liquid membrane system for determination of nickel in seawater[J]. Talanta, 2007, 71(1):165-170.
    [95] GUYON F, PARTHASARATHY N, BUFFLE J. Permeation liquid membrane metal transport studies of complex stoichiometries and reactions in Cu(Ⅱ) extraction with the mixture 22DD-Laurate in Toluene/Phenylhexane[J]. Analytical Chemistry, 2000, 72(6):1328-1333.
    [96] UEBERFELD J, PARTHASARATHY N, ZBINDEN H, et al. Coupling fiber optics to a permeation liquid membrane for heavy metal sensor development[J]. Analytical Chemistry, 2002, 74(3):664-670.
    [97] GRANADO-CASTRO M D, CASANUEVA-MARENCO M J, GALINDO-RIA O M D, et al. A separation and preconcentration process for metal speciation using a liquid membrane:A case study for iron speciation in seawater[J]. Marine Chemistry, 2018, 198(20):56-63.
    [98] DOMINGUEZ-LLEDO F C, GALINDO-RIANO M D, DIAZ-LOPEZ I C, et al. Applicability of a liquid membrane in enrichment and determination of nickel traces from natural waters[J]. Analytical and Bioanalytical Chemistry, 2007, 389(2):653-659.
    [99] CHAO J B, ZHOU X X, SHEN M H, et al. Speciation analysis of labile and total silver(Ⅰ) in nanosilver dispersions and environmental waters by hollow fiber supported liquid membrane extraction[J]. Environmental Science & Technology, 2015, 49(24):14213-14220.
    [100] DENG Y, Petersen E J, Challis K E, et al. Multiple method analysis of TiO2 nanoparticle uptake in rice (Oryza sativa L.) plants[J]. Environmental Science & Technology, 2017, 51(18):10615-10623.
    [101] MERRIFIELD R C, STEPHAN C, LEAD J. Determining the concentration dependent transformations of Ag nanoparticles in complex media:Using SP-ICP-MS and Au@Ag core-shell nanoparticles as tracers[J]. Environmental Science & Technology, 2017, 51(6):3206-3213.
    [102] MICHALKE B, VINKOVIC-VRCEK I. Speciation of nano and ionic form of silver with capillary electrophoresis-inductively coupled plasma mass spectrometry[J]. Journal of Chromatography, 2018, 1572:162-171.
    [103] WANG Z, LIU S J, MA J, et al. Silver nanoparticles induced RNA polymerase-Silver binding and RNA transcription inhibition in erythroid progenitor cells[J].ACS Nano, 2013, 7(5):4171-4186.
    [104] MITRANO D M, LESHER E K, BEDNAR A, et al. Detecting nanoparticulate silver using single-particle iinductively coupled plasma-mass spectrometry[J]. Nanomaterials in the Environment, 2012, 31(1):115-121.
    [105] DAVISON W, ZHANG H. Progress in understanding the use of diffusive gradients in thin films(DGT)-back to basics[J]. Environmental Chemistry, 2012, 9(1):1-13.
    [106] DAHLQVIST R, ZHANG H, INGRI J, et al. Performance of the diffusive gradients in thin films technique for measuring Ca and Mg in freshwater[J]. Analytica Chimica Acta, 2002, 460(2):247-256.
    [107] FORSBERG J, DAHLQUIST R, GELTING-NYSTROM J, et al. Trace metal speciation in Brackish water using diffusive gradients in thin films and ultrafiltration:comparison of techniques[J]. Environmental Science & Technology, 2006, 40(12):3901-3905.
    [108] HAMID M P, FRANCIS L M, ZHANG H. Measurement of ZnO nanoparticles using diffusive gradients in thin films:Binding and diffusional characteristics[J]. Analytical Chemistry, 2014, 86(12):5906-5913.
    [109] SEAH K C, QASIM G H, HONG Y S, et al. Assessment of colloidal copper speciation in the Mekong River Delta using diffusive gradients in thin film techniques[J]. Estuarine Coastal and Shelf Science, 2017, 188:109-115.
    [110] HADIOUI M, LECLERC S, WILKINSON K J. Multimethod quantification of Ag+ release from nanosilver[J]. Talanta, 2013, 105(15):15-19.
    [111] HADIOUI M, PEYORT C, WILKINSON K J. Improvements to single particle ICPMS by the online coupling of ion exchange resins[J]. Analytical Chemistry, 2014, 86(10):4668-4674.
    [112] HADIOUI M, MERDZAN V, WILKINSON K J. Detection and characterization of ZnO nanoparticles in surface and waste water using single particle ICPMS[J]. Environmental Science & Technology, 2015, 49(10):6141-6148.
    [113] FRECHETTE-VIENS L, HADIOUI M, WILKINSON K J. Practical limitations of single particle ICP-MS in the determination of nanoparticle size distributions and dissolution:Case of rare earth oxides[J]. Talanta, 2017, 163:121-126.
    [114] TOU F Y, YANG Y, FENG J N. Environmental risk implications of metals in sludges from waste water treatment plants, the discovery of vast stores of metal-containing nanoparticles[J]. Environmental Science & Technology, 2017, 51(9):4831-4840.
    [115] BANSOD B, KUMAR T, THAKUR R, et al. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms[J]. Biosensors and Bioelectronics, 2017, 94:443-455.
    [116] EISMANN C E, MENEG RIO A A, GEMEINER H, et al. Predicting trace metal exposure in aquatic ecosystems:Evaluating DGT as a biomonitoring tool[J]. Exposure and Health, 2018:1-13.
  • 加载中
计量
  • 文章访问数:  2156
  • HTML全文浏览数:  2156
  • PDF下载数:  76
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-12-12

水环境中基于分离-富集的金属形态分析方法研究进展

    通讯作者: 赵春梅, E-mail: zhaochm3@mail.sysu.edu.cn
  • 1. 中山大学环境科学与工程学院, 广州, 510275;
  • 2. 广东省环境污染控制与修复技术重点实验室(中山大学), 广州, 510275
基金项目:

国家自然科学青年基金(21607178)资助.

摘要: 金属的形态对其在环境介质中的迁移转化、生物有效性和毒性具有重要影响.目前认为,金属的自由离子态和不稳定络合态是具有潜在生物有效性的形态,而纳米颗粒的存在使得具有生物有效性的金属形态变得更为复杂.痕量金属和纳米颗粒在天然水环境中的含量较低,大部分检测方法无法达到检测限要求.基于分离-富集的金属形态分析方法因检测限低、操作简单、结果可靠等优点被广泛用于环境中痕量金属及纳米颗粒存在下金属的形态分析.本文从原理、应用条件和优缺点等方面对梯度扩散薄膜技术、唐南渗析膜技术、离子交换技术和渗透液膜技术等基于分离-富集的金属形态分析方法进行综述,为水环境中金属形态分析方法的选择提供了参考和依据.

English Abstract

参考文献 (116)

目录

/

返回文章
返回