-
水污染和水资源短缺严重阻碍着社会和经济的可持续发展[1-2]。膜法水处理技术因具有处理效率高、出水水质好、占地面积小等优点[3],在水处理领域受到广泛关注。作为低压膜分离技术的典型代表,超/微滤技术已被广泛应用于给水处理、污水回用以及海水淡化预处理等领域[4-5]。然而,膜污染问题始终制约着膜分离技术的进一步发展[6]。
现阶段针对膜污染的控制方法主要包括膜前水质调控、膜清洗以及膜材料改性等[7]。其中,水质调控的效果较大程度上依赖于进水水质和前处理工艺参数的选择,在实际工程中控制难度较大。膜清洗是目前实际工程中控制膜污染的常规手段,无论是水/气冲刷、水力反冲洗,还是化学清洗,均可在一定程度上减缓膜污染的发展。但是,膜清洗额外增加的药剂和操控成本,及其对出水水质和膜寿命等的影响,并不利于膜技术的可持续发展[3]。膜污染本质上是一种界面现象,是待过滤料液中的溶解性有机物、胶体和颗粒物质等与膜表面之间相互作用的结果[3]。因此,膜的界面性质(如带电属性、粗糙度以及亲疏水性等),主导着膜污染的产生和发展。大量研究[5-7]表明,膜的亲疏水性是影响膜污染发展的最核心因素之一,而制备超亲水膜是从根本上控制膜污染的有效途径。
纳米材料和纳米技术的发展为新型超亲水膜的研制提供了诸多途径。氧化石墨烯(GO)作为一种表面富含羧基(—COOH)、羟基(—OH)等活性位点的二维纳米材料,已被广泛应用于水处理领域[8-10]。纳米SiO2具有易化学修饰的特点,可基于硅烷化反应灵活制备出性能丰富的有机/无机复合材料,已被广泛用于对传统有机膜材料的亲水改性[11-12]。
本研究以不锈钢网[13]为基底,以GO和氨基修饰的纳米SiO2为膜材料,利用GO表面的—COOH与纳米SiO2表面的氨基(—NH2)之间的自组装共价键反应,开展了多种新型GO/SiO2无机复合膜的制备研究。对比了4种制膜方法,即真空抽滤、多巴胺辅助抽滤、热辅助法和高温煅烧辅助抽滤法,结合对所得膜的表面官能团组成、表面形貌、表面粗糙度和亲水性的系统表征,以复合膜的亲水性和稳定性为评价指标,对超亲水GO/SiO2复合膜的制备方法进行了优选,为超亲水无机复合膜的制备提参考。
超亲水石墨烯/二氧化硅复合膜的制备优化和表征
Preparation optimization and characterization of superhydrophilic graphene/silica composite membranes
-
摘要: 膜表面亲水性是主导膜污染发生的关键因素,亲水膜的抗污染能力较强。基于氧化石墨烯(GO)和氨基修饰的纳米SiO2之间的自组装反应,分别通过真空抽滤、多巴胺辅助抽滤、热辅助法以及高温煅烧辅助抽滤法制备了多种GO/SiO2复合膜,结合纯水接触角测定、表面官能团分析以及电镜观察等,对制备方法和条件进行了优化。结果表明:高温煅烧法制备的超亲水GO/SiO2复合膜,其初始接触角为6.1°,并于2 s内,在膜表面实现完全铺展,表现出超亲水特性;此外,所制备的GO/SiO2超亲水膜的纯水通量分别是传统PVDF超滤膜、超亲水SiO2/PVDF复合膜和0.22 μm有机商业膜的3.21、11.10和1.22倍,显示出良好的应用潜力。Abstract: Membrane surface hydrophilicity is a key factor that dominates the occurrence and development of membrane fouling. A hydrophilic membrane normally performs better in antifouling. Based on the self-assembly reaction between graphene oxide (GO) and amine-terminated nano-SiO2, different kinds of GO/SiO2 membranes were prepared by the respective method of vacuum-induced filtration, dopamine-assisted vacuum filtration, heat-induced deposition, or high temperature calcination-assisted deposition. With systematic characterizations including contact angle measurement, surface functional group analyses and scanning electron microscope, the preparation methods and their corresponding conditions were compared and optimized. The superhydrophilic GO/SiO2 prepared by the calcination-assisted deposition method had the following characteristics: a low initial contact angle of 6.1°, a complete spreading on the membrane surface within 2 s, and an excellent superhydrophilic characteristic. In addition, the pure water flux of the GO/SiO2 membrane was 3.21, 11.10 and 1.22 times as much as that of the conventional PVDF membrane, superhydrophilic SiO2/PVDF composite membrane, or 0.22 μm commercial membrane, respectively, which presented promising applications in various fields.
-
Key words:
- superhydrophilic membrane /
- graphene oxide /
- SiO2 /
- self-assembly
-
-
[1] REZAKAZEMI M, DASHTI A, HARAMI H R, et al. Fouling-resistant membranes for water reuse[J]. Environmental Chemistry Letters, 2018, 16(3): 715-763. doi: 10.1007/s10311-018-0717-8 [2] 曲久辉, 赵进才, 任南琪, 等. 城市污水再生与循环利用的关键基础科学问题[J]. 中国基础科学, 2017, 19(1): 6-12. doi: 10.3969/j.issn.1009-2412.2017.01.002 [3] MA Z B, ZHANG S, CHEN G H, et al. Superhydrophilic and oleophobic membrane functionalized with heterogeneously tailored two-dimensional layered double hydroxide nanosheets for antifouling[J]. Journal of Membrane Science, 2019, 577: 165-175. doi: 10.1016/j.memsci.2019.01.054 [4] WU B. Membrane-based technology in greywater reclamation: A review[J]. Science of the Total Environment, 2019, 656: 184-200. doi: 10.1016/j.scitotenv.2018.11.347 [5] HUANG Y F, FENG X S. Polymer-enhanced ultrafiltration: Fundamentals, applications and recent developments[J]. Journal of Membrane Science, 2019, 586: 53-83. doi: 10.1016/j.memsci.2019.05.037 [6] XIAO K, LIANG S, WANG X, et al. Current state and challenges of full-scale membrane bioreactor applications: A critical review[J]. Bioresource Technology, 2019, 271: 473-481. doi: 10.1016/j.biortech.2018.09.061 [7] ZHANG R N, LIU Y N, HE M R, et al. Antifouling membranes for sustainable water purification: Strategies and mechanisms[J]. Chemical Society Reviews, 2016, 45(21): 5888-5924. doi: 10.1039/C5CS00579E [8] 李青青, 朱振亚, 王磊, 等. 氧化石墨烯改性PVDF/PET复合膜的制备及其抗污染性能[J]. 环境工程学报, 2018, 12(1): 25-33. doi: 10.12030/j.cjee.201705167 [9] 杜锦滢, 张军, 李宁, 等. 氧化石墨烯改性PVDF膜的研究进展[J]. 环境科学与技术, 2018, 41(S1): 120-125. [10] 高晓琪, 梁帅, 曹俊, 等. 石墨烯在水处理膜改性中的研究与应用[J]. 环境科学与技术, 2017, 40(10): 82-88. [11] LIANG S, XIAO K, ZHANG S, et al. A facile approach to fabrication of superhydrophilic ultrafiltration membranes with surface-tailored nanoparticles[J]. Separation and Purification Technology, 2018, 203: 251-259. doi: 10.1016/j.seppur.2018.04.051 [12] RAMASAMY D L, KHAN S, REPO E, et al. Synthesis of mesoporous and microporous amine and non-amine functionalized silica gels for the application of rare earth elements (REE) recovery from the waste water-understanding the role of pH, temperature, calcination and mechanism in light REE and heavy REE separation[J]. Chemical Engineering Journal, 2017, 322: 56-65. doi: 10.1016/j.cej.2017.03.152 [13] ZHAO Z H, SHEN Y Q, YANG H D, et al. Underliquid superlyophobic copper-coated meshes for the separation of immiscible organic liquid mixtures[J]. ACS Applied Materials and Interfaces, 2019, 11(31): 28370-28376. doi: 10.1021/acsami.9b05812 [14] LIANG S, KANG Y, TIRAFERRI A, et al. Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles[J]. ACS Applied Materials and Interfaces, 2013, 5(14): 6694-6703. doi: 10.1021/am401462e [15] WANG Z, ELIMELECH M, LIN S. Environmental applications of interfacial materials with special wettability[J]. Environmental Science & Technology, 2016, 50(5): 2132-2150. [16] DENG W, LI C, PAN F P, et al. Efficient oil/water separation by a durable underwater superoleophobic mesh membrane with TiO2 coating via biomineralization[J]. Separation and Purification Technology, 2019, 222: 35-44. doi: 10.1016/j.seppur.2019.04.019 [17] HAESHIN L, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430. doi: 10.1126/science.1147241 [18] ZHAO F, MA Z B, XIAO K, et al. Hierarchically textured superhydrophobic polyvinylidene fluoride membrane fabricated via nanocasting for enhanced membrane distillation performance[J]. Desalination, 2018, 443: 228-236. doi: 10.1016/j.desal.2018.06.003 [19] ISMAIL M F, KHORSHIDI B, SADRZADEH M. New insights into the impact of nanoscale surface heterogeneity on the wettability of polymeric membranes[J]. Journal of Membrane Science, 2019, 590: 117-125. [20] DRELICH J, CHIBOWSKI E, MENG D D, et al. Hydrophilic and superhydrophilic surfaces and materials[J]. Soft Matter, 2011, 7(21): 9804-9828. doi: 10.1039/c1sm05849e [21] RAMASAMY D L, REPO E, SRIVASTAVA V, et al. Chemically immobilized and physically adsorbed PAN/acetylacetone modified mesoporous silica for the recovery of rare earth elements from the waste water-comparative and optimization study[J]. Water Research, 2017, 114: 264-276. doi: 10.1016/j.watres.2017.02.045 [22] LIU K, VUCKOVAC M, LATIKKA M, et al. Improving surface-wetting characterization[J]. Science, 2019, 363(6432): 1147-1148. doi: 10.1126/science.aav5388