-
近年来,水体咸化富营养化问题日益严重,水资源短缺问题日益突出。人工湿地作为一种水体生态修复技术,可应用于咸化富营养化水体的治理[1-3]。有研究[4-5]表明,人工湿地系统处理含盐废水的脱氮除磷效果较好。
植物是构成人工湿地的重要部分,湿地植物根系存在根际效应,根际中微生物数量和活性高于非根际环境,可以促进湿地处理系统的硝化和反硝化作用,强化湿地生物脱氮能力[6]。有研究[7]表明,根际周围的微生物通常是非根际的几十到几千倍,很多有机物高效降解菌株是由植物根际分离获得的。然而盐度胁迫会抑制微生物的生长,高锋等[8]将人工湿地应用于含盐生活污水处理,当进水盐度达到2.00%时,人工湿地基质中细菌、真菌、放线菌和硝化细菌的数量明显减少,基质脲酶、纤维素酶活性也相应下降,湿地基质微生物数量及活性受到抑制。
目前人工湿地处理含盐富营养化水的微生态学机理研究较少,尤其对不同盐度水平下的湿地植物根际与非根际的微生物菌群变化尚未探究。因此,本研究构建了模拟千屈菜垂直流人工湿地系统,处理盐度为0.05%、0.50%、1.00%的富营养化水,并通过高通量测序分析了不同盐度下千屈菜根际与非根际微生物菌群变化,研究结果对揭示垂直流人工湿地处理含盐富营养化水微生态学机理具有参考价值。
人工湿地处理含盐富营养化水的植物根际与非根际菌群分析
Analysis of bacterial community at the rhizosphere and non-rhizosphere of plants in constructed wetland treating brackish eutrophic water
-
摘要: 为了探究盐胁迫对于人工湿地植物根际与非根际微生态环境的影响,将垂直流人工湿地应用于含盐富营养化水体处理,考察了0.05%、0.50%和1.00%盐度水平下的脱氮效果,并采用高通量测序方法分析湿地植物千屈菜根际与非根际的菌群变化。结果表明:在0.50%和1.00%盐胁迫下,系统的硝化作用受到抑制;然而在各盐度水平下,
${ {\rm{NO}}_{\rm{3}}^{\rm{ - }}}$ -N的去除率均大于95%,盐度胁迫下反硝化菌更能适应环境。对人工湿地系统在0.05%、0.50%和1.00%盐度水平下千屈菜根际与非根际基质样品的OTU聚类情况分析可知,在盐胁迫下,千屈菜根系丰富了土壤中微生物的多样性,根际环境中的微生物多样性明显高于非根际环境。盐度胁迫抑制了硝化菌的生长,仅在0.05%盐度的非根际组和0.50%盐度的根际组检测到有硝化作用菌群的存在。与硝化菌相比,反硝化菌更耐盐冲击,0.05%、0.50%与1.00%盐度水平下,均检测到反硝化菌,在1.00%盐度水平下检测出耐盐反硝化菌黄杆菌属Flavobacterium。Abstract: In order to explore the effect of salinity stress on the micro-ecological environment of the rhizosphere and non-rhizosphere of plants in constructed wetland, the vertical flow constructed wetland was applied to treat brackish eutrophic water, and its nitrogen removal performance at salinity levels of 0.05%, 0.50% and 1.00% was investigated. High-throughput sequencing was used to analyze the changes of bacterial community at the rhizosphere and non-rhizosphere of Lythrum salicaria L. The results showed that the nitrification was inhibited under 0.50% and 1.00% salinity stress, but the removal efficiency of$ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$ -N was higher than 95% under each salinity level, denitrifying bacteria presented better adaption to the environment under salinity stress. Analysis of the OTU clustering in the medias of rhizosphere and non-rhizosphere under 0.05%, 0.50% and 1.00% salinity stress indicated that the roots of Lythrum salicaria L. enriched the microbial diversity under salt stress and the microbial diversity at rhizosphere environment was significantly higher than that at non-rhizosphere environment. Salinity stress inhibited the growth of nitrifying bacteria, which were only detected in the non-rhizosphere group under 0.05% salinity stress and in the rhizosphere group under 0.50% salinity stress. Compared with the nitrifying bacteria, denitrifying bacteria were more salt-tolerant. Denitrifying bacteria were detected at salinity levels of 0.05%, 0.50% and 1.00%, and salt-tolerant denitrifying bacteria such as Flavobacterium were detected at salinity level of 1.00%. -
表 1 咸化富营养化自配水水质指标平均值
Table 1. Average values of synthetic brackish eutrophic water quality
盐度/% COD/(mg·L−1) TN/(mg·L−1) $ {\rm{NH}}_{\rm{4}}^{\rm{ + }}$ -N/(mg·L−1)$ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$ -N/(mg·L−1)TP/(mg·L−1) $ {\rm{NO}}_{\rm{2}}^{\rm{ - }}$ -N/(mg·L−1)pH 0.05 60.19 13.03 9.19 3.03 6.56 0.81 7.06 0.50 61.28 12.73 9.08 2.94 6.67 0.71 7.04 1.00 63.30 12.35 8.95 2.90 6.65 0.50 7.08 表 2 不同盐度水平下的脱氮效果
Table 2. Nitrogen removal efficiency at different salinity levels
% 盐度 TN去除率 $ {\rm{NH}}_{\rm{4}}^{\rm{ + }}$ -N去除率$ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$ -N去除率0.05 64.1 88.2 93.8 0.50 55.2 71.9 100 1.00 28.1 59.8 95.8 表 3 千屈菜根际与非根际DNA样本的Shannon指数
Table 3. Shannon index of DNA samples at rhizosphere and non-rhizosphere of Lythrum salicaria L.
样品名称 表观物种数量 Shannon指数 RS0.05 2 790 9.535 NRS0.05 2 668 9.478 RS0.50 2 795 9.642 NRS0.50 2 580 9.173 RS1.00 2 564 9.519 NRS1.00 2 613 9.394 -
[1] 褚润, 陈年来, 王巧芳. 西北干旱、半干旱地区高盐人工湿地适宜植物筛选[J]. 湿地科学, 2018, 16(2): 204-212. [2] FU G P, ZHAO L, HUANG S, et al. Isolation and identification of a salt-tolerant aerobic denitrifying bacterial strain and its application to saline wastewater treatment in constructed wetlands[J]. Bioresource Technology, 2019, 290: 121725. doi: 10.1016/j.biortech.2019.121725 [3] 李芊芊, 罗柳青, 陈洋芳, 等. 高盐污水处理人工湿地中耐盐植物的筛选[J]. 应用与环境生物学报, 2017, 23(5): 873-878. [4] 史鹏博, 朱洪涛, 孙德智. 人工湿地不同填料组合去除典型污染物的研究[J]. 环境科学学报, 2014, 34(3): 704-711. [5] 向衡, 韩芸, 潘瑞玲, 等. 潜流-垂直流改进型人工湿地处理河道水的研究[J]. 环境工程, 2015, 33(3): 60-64. [6] 裘湛. 人工湿地植物根际效应对根部微生物影响的研究进展[J]. 净水技术, 2018, 37(7): 26-30. [7] TOYAMA T, FURUKAWA T, MAEDA N, et al. Accelerated biodegradation of pyrene and benzo[a]pyrene in the phragmites australis rhizosphere by bacteria-root exudate interactions[J]. Water Research, 2011, 45(4): 1629-1638. doi: 10.1016/j.watres.2010.11.044 [8] 高锋, 杨朝晖, 李晨, 等. 人工湿地处理含盐生活污水的特性研究[J]. 环境科学, 2012, 33(11): 3820-3825. [9] 赵卉琳. 耐盐挺水植物去除氮磷的机制及根际氨氧化菌群特征分析[D]. 天津: 天津大学, 2014. [10] 国家环境保护总局. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2002. [11] 叶芳凝, 石先阳. 盐度对MBR处理高氨氮废水的运行及微生物群落影响研究[J]. 膜科学与技术, 2018, 8(5): 77-83. [12] 郭姿璇, 王群, 佘宗莲. 盐度对未驯化微生物活性的影响[J]. 中国环境科学, 2017, 37(1): 181-187. [13] 蔺中, 杨杰文, 蔡彬, 等. 根际效应对狼尾草降解土壤中阿特拉津的强化作用[J]. 农业环境科学学报, 2017, 36(3): 531-538. [14] 陈悦, 吕光辉, 李岩, 等. 独山子区优势草本植物根际与非根际土壤微生物功能多样性[J]. 生态学报, 2018, 38(9): 3110-3117. [15] 潘福霞, 来晓双, 李欣, 等. 不同湿地植物脱氮效果与根际土壤微生物群落功能多样性特征分析[J/OL]. [2019-11-02]. http://1kns.cnki.net/kcms/detail/11.1827.X.20191104.1049.002.html. [16] 李文甫, 杜柳冰, 刘思莹, 等. 一株高效好氧反硝化细菌的分离鉴定及脱氮性能研究[J]. 生物技术通报, 2019, 35(9): 202-209. [17] OM P, GREEN S J, PUJA J, et al. Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer[J]. International Journal of Systematic & Evolutionary Microbiology, 2012, 62(10): 2457-2462. [18] RODRIGUEZ-SANCHEZ A, MUNOZ-PALAZON B, MAZA-MARQUEZ P, et al. Process performance and bacterial community dynamics of partial-nitritation biofilters subjected to different concentrations of cysteine amino acid[J]. Biotechnology Progress, 2016, 32(5): 1254-1263. doi: 10.1002/btpr.2331 [19] ELLEN K, KATHRIN D, DAGMAR T, et al. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland[J]. Applied and Environmental Microbiology, 2006, 72(9): 5957-5962. doi: 10.1128/AEM.00439-06 [20] LI S J, LUO Z X, JI G D. Seasonal function succession and biogeographic zonation of assimilatory and dissimilatory nitrate-reducing bacterioplankton[J]. Science of the Total Environment, 2018, 637: 1518-1525. [21] 王思宇, 李军, 王秀杰, 等. 添加芽孢杆菌污泥反硝化特性及菌群结构分析[J]. 中国环境科学, 2017, 37(12): 4649-4656. [22] WAN Y X, ZHOU L A, WANG S, et al. Syntrophic growth of geobacter sulfurreducens accelerates anaerobic denitrification[J]. Frontiers in Microbiology, 2018, 9: 1572. doi: 10.3389/fmicb.2018.01572 [23] NAOMI O, MARINA W, MICHAEL M, et al. ectoine biosynthesis in mycobacterium smegmatis[J]. Applied and Environmental Microbiology, 2012, 78(20): 7483-7486. doi: 10.1128/AEM.01318-12 [24] 芦燕, 曾静, 赵吉, 等. 典型草原区不同生境反硝化菌群的空间特征[J]. 微生物学通报, 2019, 46(4): 707-720. [25] GUO X C, MIAO Y, WU B, et al. Correlation between microbial community structure and biofouling as determined by analysis of microbial community dynamics[J]. Bioresource Technology, 2015, 197: 99-105. doi: 10.1016/j.biortech.2015.08.049 [26] ZHANG L, GAO G, TANG X M, et al. Impacts of different salinities on bacterial biofilm communities in fresh water[J]. Canadian Journal of Microbiology, 2014, 60(5): 319-326. doi: 10.1139/cjm-2013-0808 [27] YI X H, WAN J Q, MA Y W, et al. Structure and succession of bacterial communities of the granular sludge during the initial stage of the simultaneous denitrification and methanogenesis process[J]. Water, Air & Soil Pollution, 2017, 228(3): 121. [28] 刘志培, 刘双江. 硝化作用微生物的分子生物学研究进展[J]. 应用与环境生物学报, 2004, 10(4): 521-525. [29] SU J J, YEH K S, TSENG P W. A strain of Pseudomonas sp. isolated from piggery wastewater treatment systems with heterotrophic nitrification capability in taiwan[J]. Current Microbiology, 2006, 53(1): 77-81. doi: 10.1007/s00284-006-0021-x [30] 廖小红, 汪苹, 刁惠芳, 等. 蜡状芽孢杆菌WXZ-8的异养硝化/好氧反硝化性能研究[J]. 环境污染与防治, 2009, 31(7): 17-20. [31] 王欢, 汪苹, 刘晶晶. 好氧反硝化菌的异养硝化性能研究[J]. 环境科学与技术, 2008, 31(11): 45-47. [32] WANG J L, GONG B Z, HUANG W, et al. Bacterial community structure in simultaneous nitrification, denitrification and organic matter removal process treating saline mustard tuber wastewater as revealed by 16S rRNA sequencing[J]. Bioresource Technology, 2017, 228: 31-38. doi: 10.1016/j.biortech.2016.12.071