-
近年来,聚偏氟乙烯(PVDF)因其优异的机械性、耐辐射性、化学稳定性和耐腐蚀性而成为关键的分离膜材料[1]。因此,该材料已被广泛应用于微滤、超滤、膜生物反应器等领域[2]。然而,其低亲水性的特点往往造成严重的膜污染,导致分离过程中能量消耗增加,膜的使用寿命降低,从而造成运行成本增大[3]。等离子体改性技术是改善PVDF超滤膜亲水性的方法之一[4],已有研究[5-8]发现,经等离子体处理后,膜表面的亲水性得到了改善,膜的抗污染性能得到了提高,膜的使用寿命得到了延长。
不同的惰性气体和反应性气体可以结合多种化学基团(如羟基、羰基、羧基、氨基或过氧基),以进一步提高电化学性能。氧等离子体可通过接枝羟基、羰基和羧酸酯基团来修饰表面,但有研究[9]发现,氧具有化学刻蚀特性,氩等离子体在引入表面粗糙度相对较低的含氧基团方面更有效;而氨等离子体不仅可以在材料表面引入含氧基团,还可引入大量含氮基团,从而提高材料表面的亲和性[10]。然而,以往的等离子体表面改性研究均只限于放电区进行,放电过程中生成的等离子体中各种活性物质(如电子、离子、自由基)混合存在[11],并同时作用于材料表面,发生修饰、接枝聚合、交联和刻蚀等综合效应,对材料表面的刻蚀作用较强[12]。在前期研究[13]的基础上,利用等离子体中各种活性粒子存活寿命不同、对材料表面作用不同的特点,通过改变样品距放电中心的距离来控制等离子体中活性粒子的浓度,以获得相对高浓度的自由基环境,增强自由基反应,减少电子、离子刻蚀反应 [11,14]。已有研究 [15-17]表明,与等离子体改性相比,远程等离子体改性在进一步提高材料表面亲水性、抗污染性能的同时,可降低改性过程对材料表面机体性能和膜孔性能的影响。
本研究采用远程氨等离子体处理PVDF超滤膜,通过接触角表征PVDF超滤膜表面的亲水性变化,通过扫描电镜和X-射线光电子能谱表征PVDF超滤膜表面形貌、化学成分变化,通过BSA过滤实验,评价改性前后PVDF超滤膜的过滤性能及抗污染性能变化,为等离子体膜表面改性研究提供参考。
远程氨等离子体表面改性聚偏氟乙烯超滤膜的效果分析
Effect analysis of polyvinylidene fluoride ultrafiltration membrane surface modification by remote ammonia plasma
-
摘要: 采用远程氨等离子体对聚偏氟乙烯(PVDF)超滤膜进行了表面改性实验,通过水接触角表征了改性前后PVDF超滤膜表面的亲水性能,利用扫描电镜(SEM)和X-射线光电子能谱(XPS)表征了改性前后PVDF超滤膜表面的形貌、化学成分变化,通过牛血清白蛋白(BSA)过滤实验评价了改性前后PVDF超滤膜的过滤性能及抗污染性能。结果表明,远程氨等离子体改性的最佳条件为射频功率为40 W,处理时间为45 s,气体流量为 20 cm3·min−1;远程氨等离子体通过将含氧、含氮官能团引入PVDF超滤膜表面,使其表面亲水性官能团增多,表面的亲水性能得到提高,水接触角从95.63°降至52.79°,同时降低了对材料表面的刻蚀作用;通过BSA溶液过滤实验,改性后PVDF超滤膜具有良好的过滤性能和抗污染性能,其水通量、BSA通量分别从87.42、48.00 L·(m2·h)−1增至129.36、79.98 L·(m2·h)−1,截留率从81.43%增至87.70%,总污染率从70.25%降至45.96%。综合上述结果,经过远程氨等离子体改性后,PVDF超滤膜的亲水性能、过滤性能及抗污染性能均得到改善。Abstract: The surface modification of the polyvinylidene fluoride (PVDF) ultrafiltration membrane was carried out by remote ammonia plasma. For PVDF ultrafiltration membrane pro- and post- modification, water contact angle was used to characterize their hydrophilicity, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize their morphology and chemical composition changes, respectively, and the bovine serum albumin (BSA) filtration experiments were conducted to evaluatethe their filtration performance and anti-fouling performance. The results showed that the optimum conditions of remote ammonia plasma modification were RF power of 40 W, treatment time of 45 s, and ammonia flux of 20 cm3·min−1. The remote ammonia plasma introduced oxygen-containing and nitrogen-containing functional groups into the surface of the PVDF ultrafiltration membrane, which increased the number of hydrophilic functional groups on its surface and improved its surface hydrophility accordingly. The water contact angle decreased from 95.63° to 52.79°, and the etching effect on material surface also was weakened. In the filtration experiment of BSA solution, the modified PVDF ultrafiltration membrane showed good filtration performance and anti-fouling property, its water and BSA flux increased from 87.42, 48.00 L·(m2·h)−1 to 129.36, 79.98 L·(m2·h)−1, respectively. The rentention rate increased from 81.43% to 87.70%, and the fouling rate decreased from 70.25% to 45.96%. Therefore, the hydrophilicity, filtration and anti-fouling performance of PVDF ultrafiltration membrane were improved atter surface modification by remote ammonia plasma.
-
表 1 PVDF超滤膜表面元素组成
Table 1. Surface elemental compositions of various PVDF membranes
样品状态 膜表面元素质量分数/% (O+N)/C F/C C N O F 未处理 55.35 0 4.30 38.89 0.08 0.70 已处理(放电中心处) 68.71 4.18 12..68 12.60 0.24 0.18 已处理(距放电中心40 cm处) 68.30 4.22 12.76 11.58 0.25 0.17 -
[1] LIU F, HASHIM N A, LIU Y, et al. Progress in the production and modification of PVDF membranes[J]. Journal of Membrane Science, 2011, 375: 1-27. doi: 10.1016/j.memsci.2011.03.014 [2] KANG G D, CAO Y M. Application and modification of moly(vinylidene fluoride) (PVDF) membranes: A review[J]. Journal of Membrane Science, 2014, 463: 145-165. doi: 10.1016/j.memsci.2014.03.055 [3] WANG Z X, JIANG X, CHENG X Q, et al. Mussel-inspired hybrid coatings that transform membrane hydrophobicity into high hydrophilicity an underwater superoleophobicity for oil-in-water emulsion separation[J]. ACS Applied Materials & Interfaces, 2015, 7: 9534-9545. [4] CHINPA W, QUEMENER D, BECHE E. Preparation of moly(etherimide) based ultrafiltration membrane with low fouling property by surface modification with poly(ethylene glycol)[J]. Journal of Membrane Science, 2010, 365: 89-97. doi: 10.1016/j.memsci.2010.08.040 [5] SINGH N L, PELAGADE S M, RANE R S, et al. Influence of argon plasma treatment on polyethersulphone surface[J]. Pramana, 2013, 80: 133-141. doi: 10.1007/s12043-012-0461-8 [6] JUANG R S, CHEN K S, WEI T C, et al. Surface characterization of argon/methane mixture atmospheric-pressure plasma-treated filtration poly(vinylidene fluoride) membrane and its flux enhancement[J]. IEEE Transactions on Plasma Science, 2014, 42: 3698-3702. doi: 10.1109/TPS.2014.2337312 [7] LIU C, WU L L, ZHANG C C, et al. Surface hydrophilic modification of pvdf membranes by trace amounts of tannin and polyethyleneimine[J]. Applied Surface Science, 2018, 457: 695-704. doi: 10.1016/j.apsusc.2018.06.131 [8] JUANG R S, HUANG C, HSIEH C L. Surface modification of PVDF ultrafiltration membranes by remote argon/methane gas mixture plasma for fouling reduction[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45: 2176-2186. doi: 10.1016/j.jtice.2014.06.025 [9] ZHAO J J, YANG Y, LI C, et al. Fabrication of GO modified pvdf membrane for dissolved organic matter removal: Removal mechanism and antifouling property[J]. Separation and Purification Technology, 2018, 209: 482-490. [10] KAYNAK A, MEHMOOD T, DAI X, et al. Study of radio frequency plasma treatment of pvdf film using Ar, O2 and (Ar + O2) gases for improved polypyrrole adhesion[J]. Materials, 2016, 6: 3482-3493. [11] 李茹, 李柯, 陈杰瑢. 远程氩等离子体表面改性对聚氯乙烯润湿性的影响[J]. 西安交通大学学报, 2005, 39(9): 1030-1034. doi: 10.3321/j.issn:0253-987X.2005.09.029 [12] WANG Z X, LAU C H, ZHANG N Q, et al. Mussel-inspired tailoring of membranes wettability for harsh water treatment[J]. Journal of Materials Chemistry A, 2012, 3: 2650-2657. [13] GOLDMAN A, AMOUROUX J. Macroscopic processes and discharge[M]//KUNHARD E, ELUSSEN L H. Electrical Breakdown and Discharge in Gases. New York: Plenum, 1983: 293. [14] 李茹, 陈杰瑢, 陈军, 等. 远程等离子体改善PVC生物填料表面性能的研究[J]. 环境科学, 2006, 27(1): 43-46. doi: 10.3321/j.issn:0250-3301.2006.01.008 [15] SANCHIS M R, CALVO O, FENOLLAR O, et al. Surface modification of a polyurethane film by low pressure glow discharge oxygen plasma treatment[J]. Journal of Applied Polymer Science, 2007, 105: 1077-1085. doi: 10.1002/app.26250 [16] JIN Y T, HU D, LIN Y K, et al. Hydrophilic modification of polyvinylidene fluoride membrane by blending amphiphilic copolymer via thermally induced phase separation[J]. Polymers for Advanced Technologies, 2018, 8: 1-10. [17] MEHMOOD T, DAI X J, KAYNAK A, et al. Improved bonding and conductivity of polypyrrole on polyester by gaseous plasma treatment[J]. Plasma Processes and Polymers, 2012, 9: 1006-1014. doi: 10.1002/ppap.201200046 [18] 刘红霞, 陈杰瑢, 周媛. 远程氧等离子体对大肠杆菌的灭菌效果与机理研究[J]. 西安交通大学学报, 2008, 42(1): 96-100. doi: 10.3321/j.issn:0253-987X.2008.01.022 [19] 王琛, 陈杰瑢. 远程等离子体处理对聚四氟乙烯表面的功能化改性[J]. 化工进展, 2010, 29(1): 112-118. [20] JUAN R S, HUANG C, JHENG H Y, et al. Cyclonic plasma activation on microporous poly(vinylidene fluoride) membranes for improving surface hydrophilicity[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 54: 76-82. doi: 10.1016/j.jtice.2015.03.002 [21] JALEH B, PARVIN P, WANICHAPICHART P, et al. Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma[J]. Applied Surface Science, 2010, 257: 1655-1659. doi: 10.1016/j.apsusc.2010.08.117 [22] 孙雪飞, 高勇强, 赵颂, 等. 胍基聚合物接枝改性制备抗菌抗污染超滤膜[J]. 化工学报, 2018, 69(11): 4869-4878.