-
锕系元素包括锕(Ac)、钍(Th)、镤(Pa)、铀(U)、镎(Np)、钚(Pu)、镅(Am)、锔(Cm)、锫(Bk)、锎(Cf)、锿(Es)、镄(Fm)、钔(Md)、锘(No)和铹(Lr)。锕系元素具有放射性,如232Th、239Pu和241Am的半衰期分别为1.4×1010年、2.4×104年和432年[1]。在自然环境中,除地壳含量较高的钍和铀能够形成矿床外,其他锕系元素的自然储量很少,大部分锕系元素通过人类活动被释放到自然环境中[2]。
作为一种广泛分布的锕系元素,铀(uranium, U)具有3种天然同位素,即234U、235U和238U,它们的半衰期分别达到2.45×105年、7.04×108年和4.47×109年[3]。在自然环境中,铀通常以二氧化铀(UO2)、八氧化三铀(U3O8)、铀酰离子(UO22+)等化学形态存在于岩石、土壤或水环境[4]。地壳中铀的丰度约为2.3 mg·kg−1,而土壤中铀的含量可达0.7—10.7 mg·kg−1[5]。铀具有非常重要的战略与经济价值,是核能发电的主要原料,因此铀的资源开采、纯化提取、废水处理等方面已被广泛研究[3]。另一方面,铀的环境释放与污染会导致人体暴露风险,因此其环境健康问题也一直备受关注。
受地质或人为活动等因素影响,铀可以被释放到水、土壤和空气中,造成环境铀污染。其中,有关水环境的铀污染研究最为广泛,包括地质条件、铀矿开采、农业活动等因素都可能会造成水体的铀污染,继而破坏生态环境(表1)[6]。铀既具有放射毒性,也具有化学毒性。尽管已有大量科学研究证实铀进入机体后,可导致肾、骨骼、肺、肝、脑、生殖系统等组织器官的损伤[6],然而国内有关饮用水铀污染的环境健康研究仍有待广泛和深入地开展(图1)。为更好地了解铀的环境暴露与人体健康风险,本文将重点综述我国地下水铀污染的研究现状,对地下水铀污染可能导致的人体健康危害进行梳理,并讨论地下水铀污染的潜在环境健康问题。
地下水铀污染与饮用水中铀的健康风险
Uranium contamination in groundwater and health risks of uranium in drinking water
-
摘要: 铀广泛存在于地壳中,是一种重要的战略资源。受自然和人为因素影响,铀可以被释放到天然水体中,造成地下水的铀污染,进而带来潜在的生态环境与人体健康风险。作为一种锕系元素,铀同时具有放射毒性与化学毒性。由于铀的天然同位素均具有较长的半衰期,且自然环境中铀的人体暴露具有低剂量、长周期的特点,地下水铀污染的健康风险主要体现为化学毒性。为更好地了解地下水铀污染的研究现状,本文综述了近年来针对地下水铀污染的最新研究进展。首先,简要概括了铀的物理化学性质和地质分布特征,以及地下水铀污染的主要来源。其次,重点介绍了饮用水铀暴露的人体健康风险及毒性作用机理。最后,对饮用水铀暴露的毒理健康研究相关的问题与挑战进行了展望。Abstract: Uranium is ubiquitous in the earth’s crust as an important strategic resource. Affected by natural and anthropogenic factors, uranium can be released into natural water bodies and result in uranium contamination in groundwater, which in turn brings latent ecological and human health risks. As a naturally-occurring actinide element, uranium shows both radiotoxicity and chemotoxicity. The health risks of uranium in groundwater mainly embody its chemotoxicity, due to the long half-lives of its natural isotopes and characteristics of natural uranium exposure, i.e. low-dose and long-term. For a in-depth understanding of the current research status, the latest progress of uranium contamination in groundwater has been reviewed. Firstly, we briefly present the physicochemical properties and geological characteristics of uranium, as well as the sources of uranium contamination in groundwater. Secondly, we focus on the health risks and toxicological mechanisms of uranium in drinking water. Finally, the issues and challenges upon the health risks of uranium in drinking water are prospected.
-
Key words:
- groundwater /
- drinking water /
- uranium contamination /
- health risk /
- toxicological mechanism
-
表 1 我国典型的水体铀污染案例
Table 1. Representative cases of uranium contamination in water bodies in China
-
[1] SRIDHARA G R, MANJUNATHA H C, SRIDHAR K N, et al. Systematic study of the alpha α decay properties of actinides [J]. Pramana, 2019, 93(5): 1-14. [2] MAHER K, BARGAR J R, BROWN G E. Environmental speciation of actinides [J]. Inorganic Chemistry, 2013, 52(7): 3510-3532. doi: 10.1021/ic301686d [3] KEITH L S, FAROON O M, FOWLER B A. Chapter 59 - Uranium*//NORDBERG G F, FOWLER B A, NORDBERG M. Handbook on the toxicology of metals (Fourth Edition)[M]. San Diego: Academic Press, 2015: 1307-1345. [4] ROMANCHUK A Y, VLASOVA I E, KALMYKOV S N. Speciation of uranium and plutonium from nuclear legacy sites to the environment: A mini review [J]. Frontiers in Chemistry, 2020, 8: 630. doi: 10.3389/fchem.2020.00630 [5] VODYANITSKII Y N. Chemical aspects of uranium behavior in soils: A review [J]. Eurasian Soil Science, 2011, 44(8): 862-873. doi: 10.1134/S1064229311080163 [6] MA M H, WANG R X, XU L N, et al. Emerging health risks and underlying toxicological mechanisms of uranium contamination: Lessons from the past two decades [J]. Environment International, 2020, 145: 106107. doi: 10.1016/j.envint.2020.106107 [7] WANG Z H, QIN H Y, LIU X Y. Health risk assessment of heavy metals in the soil-water-rice system around the Xiazhuang uranium mine, China [J]. Environmental Science and Pollution Research, 2019, 26(6): 5904-5912. doi: 10.1007/s11356-018-3955-1 [8] 齐文, 高柏, 陈井影, 等. 某铀尾矿库周边水环境中铀的分布特征及评价 [J]. 有色金属(冶炼部分), 2016(5): 53-56. QI W, GAO B, CHEN J Y, et al. Uranium distribution characteristics and evaluation in water environment surrounding uranium tailings [J]. Nonferrous Metals (Extractive Metallurgy), 2016(5): 53-56(in Chinese).
[9] 王新宇, 倪师军, 施泽明. 磷矿影响区——绵远河铀含量分析与形态计算 [J]. 地球科学进展, 2012, 27(S1): 426. WANG X Y, NI S J, SHI Z M. Analysis and speciation calculation of uranium content in Mianyuanhe, a phosphate ore affected area [J]. Advances in Earth Sciences, 2012, 27(S1): 426(in Chinese).
[10] 赵威光, 郭华明, 张莉, 等. 河套平原沉积物中铀的赋存形态及其与地下水铀浓度的关系 [J]. 水文地质工程地质, 2015, 42(2): 24-30, 37. ZHAO W G, GUO H M, ZHANG L, et al. Uranium forms in sediments and their relation with groundwater uranium: A case study in the Hetao basin [J]. Hydrogeology and Engineering Geology, 2015, 42(2): 24-30, 37(in Chinese).
[11] WU Y, WANG Y X, XIE X J. Occurrence, behavior and distribution of high levels of uranium in shallow groundwater at Datong basin, Northern China [J]. The Science of the Total Environment, 2014, 472: 809-817. doi: 10.1016/j.scitotenv.2013.11.109 [12] HE L, GAO B, LUO X, et al. Health risk assessment of heavy metals in surface water near a uranium Tailing Pond in Jiangxi Province, South China [J]. Sustainability, 2018, 10(4): 1113. doi: 10.3390/su10041113 [13] 宋刚, 冯颖思, 王津, 等. 某铀尾矿库下游水体及表层沉积物中铀污染特征 [J]. 环境科学与技术, 2013, 36(9): 159-162, 168. doi: 10.3969/j.issn.1003-6504.2013.09.033 SONG G, FENG Y S, WANG J, et al. Pollution of uranium contents in water and surface deposit downstream of a uranium tailing repository [J]. Environmental Science & Technology, 2013, 36(9): 159-162, 168(in Chinese). doi: 10.3969/j.issn.1003-6504.2013.09.033
[14] STEFFANOWSKI J, BANNING A. Uraniferous dolomite: A natural source of high groundwater uranium concentrations in northern Bavaria, Germany? [J]. Environmental Earth Sciences, 2017, 76(15): 1-11. [15] NOLAN J, WEBER K A. Natural uranium contamination in major U. S. aquifers linked to nitrate [J]. Environmental Science & Technology Letters, 2015, 2(8): 215-220. [16] COYTE R, JAIN R C, SRIVASTAVA S K, et al. Large-scale uranium contamination of groundwater resources in India [J]. Environmental Science & Technology Letters, 2018, 5(6): 341-347. [17] NRIAGU J, NAM D H, AYANWOLA T A, et al. High levels of uranium in groundwater of Ulaanbaatar, Mongolia [J]. Sci Total Environ, 2012, 414: 722-726. doi: 10.1016/j.scitotenv.2011.11.037 [18] GODOY J, FERREIRA P, DE SOUZA E, et al. High uranium concentrations in the groundwater of the Rio de Janeiro State, Brazil, Mountainous Region [J]. Journal of the Brazilian Chemical Society, 2019(2): 224-233. [19] ZHAOBO C, FENGMIN Z, WEIDONG X, et al. Uranium provinces in China [J]. Acta Geologica Sinica - English Edition, 2000, 74(3): 587-594. [20] JIANG X, YU Z, KU T L, et al. Distribution of uranium isotopes in the main channel of Yellow river (Huanghe), China [J]. Continental Shelf Research, 2009, 29(4): 719-727. doi: 10.1016/j.csr.2008.12.004 [21] WU Y, WANG Y X, GUO W. Behavior and fate of geogenic uranium in a shallow groundwater system [J]. Journal of Contaminant Hydrology, 2019, 222: 41-55. doi: 10.1016/j.jconhyd.2019.02.009 [22] GUO H M, ZHAO W G, LI H L, et al. High radionuclides in groundwater of an inland basin from northwest China: Origin and fate [J]. ACS Earth and Space Chemistry, 2018, 2(11): 1137-1144. doi: 10.1021/acsearthspacechem.8b00108 [23] GUO H M, JIA Y F, WANTY R B, et al. Contrasting distributions of groundwater arsenic and uranium in the western Hetao basin, Inner Mongolia: Implication for origins and fate controls [J]. Science of the Total Environment, 2016, 541: 1172-1190. doi: 10.1016/j.scitotenv.2015.10.018 [24] BOWMAN, ROBERT S. Aqueous environmental geochemistry [J]. Eos Transactions American Geophysical Union, 1997, 78(50): 586. [25] NAVARRO A, FONT X, VILADEVALL M. Groundwater contamination by uranium and mercury at the Ridaura Aquifer (Girona, NE Spain) [J]. Toxics, 2016, 4(3): 16. doi: 10.3390/toxics4030016 [26] DAHLKAMP, FRANZ J. Uranium deposits of the world[M]. Berlin: Springer Berlin Heidelberg, 2010. [27] KOBETS S A, PSHINKO G N, PUZYRNAYA L N. Uranium (VI) in natural waters: Study of occurrence forms [J]. Journal of Water Chemistry and Technology, 2012, 34(6): 277-283. doi: 10.3103/S1063455X12060057 [28] LIU B, PENG T J, SUN H J, et al. Release behavior of uranium in uranium mill tailings under environmental conditions [J]. Journal of Environmental Radioactivity, 2017, 171: 160-168. doi: 10.1016/j.jenvrad.2017.02.016 [29] WANG X, NI S, SHI Z. Uranium distribution in the sediment of the Mianyuan River near a phosphate mining region in China and the related uranium speciation in water [J]. Geochemistry, 2014, 74(4): 661-669. doi: 10.1016/j.chemer.2014.03.001 [30] JERDEN J L, SINHA A K. Phosphate based immobilization of uranium in an oxidizing bedrock aquifer [J]. Applied Geochemistry, 2003, 18(6): 823-843. doi: 10.1016/S0883-2927(02)00179-8 [31] SCHNUG E, LOTTERMOSER B G. Fertilizer-derived uranium and its threat to human health [J]. Environmental Science & Technology, 2013, 47(6): 2433-2434. [32] 孙占学, 刘媛媛, 马文洁, 等. 铀矿区地下水及其生态安全研究进展 [J]. 地学前缘, 2014, 21(4): 158-167. SUN Z X, LIU Y Y, MA W J, et al. A review on the study of groundwater and its ecological securities in uranium mining areas [J]. Earth Science Frontiers, 2014, 21(4): 158-167(in Chinese).
[33] 焦养泉, 吴立群, 荣辉等. 中国盆地铀资源概述[J/OL]. [2021-03-13].地球科学: http://kns.cnki.net/kcms/detail/42.1874.P.20201111.1334.002.html. JIAO Y Q, WU L Q, RONG H, et al. The basin uranium resources overview [J/OL]. [2021-03-13]. Earth Science http://kns.cnki.net/kcms/detail/42.1874.P.20201111.1334.002.html(in Chinese).
[34] MIN M Z, XU H F, CHEN J, et al. Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China [J]. Ore Geology Reviews, 2005, 26(3/4): 198-206. [35] WANG J, LIU J, LI H C, et al. Uranium and thorium leachability in contaminated stream sediments from a uranium minesite [J]. Journal of Geochemical Exploration, 2017, 176: 85-90. doi: 10.1016/j.gexplo.2016.01.008 [36] 刘娟, 李红春, 王津, 等. 华南某铀矿开采利用对地表水环境质量的影响 [J]. 环境化学, 2012, 31(7): 981-989. LIU J, LI H C, WANG J, et al. Environmental quality of surface waters in a uranium industrial site in South China [J]. Environmental Chemistry, 2012, 31(7): 981-989(in Chinese).
[37] 张春艳, 占凌之, 华恩祥, 等. 某铀尾矿库周边地下水的水化学特征分析 [J]. 环境化学, 2015, 34(11): 2103-2108. doi: 10.7524/j.issn.0254-6108.2015.11.2015070901 ZHANG C Y, ZHAN L Z, HUA E X, et al. Analysis on hydrochemical characteristics of groundwater in uranium tailing pond [J]. Environmental Chemistry, 2015, 34(11): 2103-2108(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.11.2015070901
[38] HUANG W H, WAN H, FINKELMAN R B, et al. Distribution of uranium in the main coalfields of China [J]. Energy Exploration & Exploitation, 2012, 30(5): 819-835. [39] CHEN J, CHEN P, YAO D X, et al. Geochemistry of uranium in Chinese coals and the emission inventory of coal-fired power plants in China [J]. International Geology Review, 2018, 60(5/6): 621-637. [40] 王红海, 张麟熹, 许乃政, 等. 江西省修水县石煤矿区放射性环境调查与评价 [J]. 辐射防护, 2017, 37(6): 476-482. WANG H H, ZHANG L X, XU N Z, et al. Investigation and evaluation of radioactive environment in a bone coal mine area in Xiushui County, Jiangxi Province [J]. Radiation Protection, 2017, 37(6): 476-482(in Chinese).
[41] 阿种明, 郭超, 李书海, 等. 伊犁盆地北缘煤炭开发区水放射性特征简析 [J]. 新疆地质, 2017, 35(3): 341-345. doi: 10.3969/j.issn.1000-8845.2017.03.020 A Z M, GUO C, LI S H, et al. The characteristics of water radioactivity in the coal mining area from the northern margin of Yili basin [J]. Xinjiang Geology, 2017, 35(3): 341-345(in Chinese). doi: 10.3969/j.issn.1000-8845.2017.03.020
[42] SCHIPPER L A, SPARLING G P, FISK L M, et al. Rates of accumulation of cadmium and uranium in a New Zealand hill farm soil as a result of long-term use of phosphate fertilizer [J]. Agriculture, Ecosystems & Environment, 2011, 144(1): 95-101. [43] KRATZ S, SCHNUG E. Rock phosphates and P fertilizers as sources of U contamination in agricultural soils//MERKEL B J, HASCHE-BERGER A. Uranium in the Environment: Mining Impact and Consequences[M]. Berlin: Heidelberg; Springer Berlin Heidelberg, 2006: 57-67. [44] 邓冰, 王和义, 蒋树斌, 等. 铀在小鼠体内的分布及其影响因素的初步探讨 [J]. 环境化学, 2011, 30(7): 1247-1252. DENG B, WANG H Y, JIANG S B, et al. The biodistribution of uranium in mice [J]. Environmental Chemistry, 2011, 30(7): 1247-1252(in Chinese).
[45] KEITH S, FAROON O, RONEY N, et al. Toxicological profile for uranium[M]. Atlanta: Agency for Toxic Substances and Disease Registry (US), Atlanta (GA), 2013. [46] XIANG L, LIU P H, JIANG X F, et al. Health risk assessment and spatial distribution characteristics of heavy metal pollution in rice samples from a surrounding hydrometallurgy plant area in No. 721 uranium mining, East China [J]. Journal of Geochemical Exploration, 2019, 207: 9. [47] WUFUER R, SONG W J, ZHANG D Y, et al. A survey of uranium levels in urine and hair of people living in a coal mining area in Yili, Xinjiang, China [J]. Journal of Environmental Radioactivity, 2018, 189: 168-174. doi: 10.1016/j.jenvrad.2018.04.009 [48] HAO Z, LI Y, LI H, et al. Levels of rare earth elements, heavy metals and uranium in a population living in Baiyun Obo, Inner Mongolia, China: A pilot study [J]. Chemosphere, 2015, 128: 161-170. doi: 10.1016/j.chemosphere.2015.01.057 [49] JIA Y F, XI B D, JIANG Y H, et al. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review [J]. The Science of the Total Environment, 2018, 643: 967-993. doi: 10.1016/j.scitotenv.2018.06.201 [50] ANSOBORLO E, LEBARON-JACOBS L, PRAT O. Uranium in drinking-water: A unique case of guideline value increases and discrepancies between chemical and radiochemical guidelines [J]. Environment International, 2015, 77: 1-4. doi: 10.1016/j.envint.2014.12.011 [51] CHEN L Z, MA T, WANG Y X, et al. Health risks associated with multiple metal(loid)s in groundwater: A case study at Hetao Plain, northern China [J]. Environmental Pollution, 2020, 263: 9. [52] ARZUAGA X, RIETH S H, BATHIJA A, et al. Renal effects of exposure to natural and depleted uranium: A review of the epidemiologic and experimental data [J]. Journal of Toxicology and Environmental Health, Part B, 2010, 13(7/8): 527-545. [53] ZAMORA M L, TRACY B L, ZIELINSKI J M, et al. Chronic ingestion of uranium in drinking water: A study of kidney bioeffects in humans [J]. Toxicological Sciences, 1998, 43(1): 68-77. doi: 10.1093/toxsci/43.1.68 [54] KURTTIO P, AUVINEN A, SALONEN L, et al. Renal effects of uranium in drinking water [J]. Environmental Health Perspectives, 2002, 110(4): 337-342. doi: 10.1289/ehp.02110337 [55] HOMMA-TAKEDA S, KOKUBO T, TERADA Y, et al. Uranium dynamics and developmental sensitivity in rat kidney [J]. Journal of Applied Toxicology, 2013, 33(7): 685-694. doi: 10.1002/jat.2870 [56] YI J, YUAN Y, ZHENG J F, et al. Hydrogen sulfide alleviates uranium-induced kidney cell apoptosis mediated by ER stress via 20S proteasome involving in Akt/GSK-3 beta/Fyn-Nrf2 signaling [J]. Free Radical Research, 2018, 52(9): 1020-1029. doi: 10.1080/10715762.2018.1514603 [57] BRUGGE D, DE LEMOS J L, OLDMIXON B. Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: A review [J]. Reviews on Environmental Health, 2005, 20(3): 177-193. [58] LARIVIERE D, PACKER A P, MARRO L, et al. Age dependence of natural uranium and thorium concentrations in bone [J]. Health Physics, 2007, 92(2): 119-126. doi: 10.1097/01.HP.0000237665.63377.8f [59] LIANQING L, GUIYUN L. Uranium concentration in bone of Beijing (China) residents [J]. The Science of the Total Environment, 1990, 90: 267-272. doi: 10.1016/0048-9697(90)90198-4 [60] KURTTIO P, KOMULAINEN H, LEINO A, et al. Bone as a possible target of chemical toxicity of natural uranium in drinking water [J]. Environmental Health Perspectives, 2005, 113(1): 68-72. doi: 10.1289/ehp.7475 [61] RODRIGUES G, ARRUDA-NETO J D T, PEREIRA R M R, et al. Uranium deposition in bones of Wistar rats associated with skeleton development [J]. Applied Radiation and Isotopes, 2013, 82: 105-110. doi: 10.1016/j.apradiso.2013.07.033 [62] ARZUAGA X, GEHLHAUS M, STRONG J. Modes of action associated with uranium induced adverse effects in bone function and development [J]. Toxicology Letters, 2015, 236(2): 123-130. doi: 10.1016/j.toxlet.2015.05.006 [63] GUÉGUEN Y, SOUIDI M, BAUDELIN C, et al. Short-term hepatic effects of depleted uranium on xenobiotic and bile acid metabolizing cytochrome P450 enzymes in the rat [J]. Archives of Toxicology, 2006, 80(4): 187-195. doi: 10.1007/s00204-005-0027-3 [64] DUBLINEAU I, SOUIDI M, GUEGUEN Y, et al. Unexpected lack of deleterious effects of uranium on physiological systems following a chronic oral intake in adult rat [J]. BioMed Research International, 2014, 2014: 181989. [65] SOUIDI M, GUEGUEN Y, LINARD C, et al. In vivo effects of chronic contamination with depleted uranium on CYP3A and associated nuclear receptors PXR and CAR in the rat [J]. Toxicology, 2005, 214(1-2): 113-122. doi: 10.1016/j.tox.2005.06.006 [66] YAPAR K, CAVUSOGLU K, ORUC E, et al. Protective role of ginkgo biloba against hepatotoxicity and nephrotoxicity in uranium-treated mice [J]. Journal of Medicinal Food, 2010, 13(1): 179-188. doi: 10.1089/jmf.2009.0028 [67] WANG S, RAN Y H, LU B H, et al. A review of uranium-induced reproductive toxicity [J]. Biological Trace Element Research, 2020, 196(1): 204-213. doi: 10.1007/s12011-019-01920-2 [68] DOMINGO J L. Reproductive and developmental toxicity of natural and depleted uranium: A review [J]. Reproductive Toxicology, 2001, 15(6): 603-609. doi: 10.1016/S0890-6238(01)00181-2 [69] ZHANG W P, LIU W, BAO S S, et al. Association of adverse birth outcomes with prenatal uranium exposure: A population-based cohort study [J]. Environment International, 2020, 135: 105391. doi: 10.1016/j.envint.2019.105391 [70] LEGENDRE A, ELMHIRI G, GLOAGUEN C, et al. Multigenerational exposure to uranium changes morphometric parameters and global DNA methylation in rat sperm [J]. Comptes Rendus. Biologies, 2019, 342(5/6): 175-185. [71] FEUGIER A, FRELON S, GOURMELON P, et al. Alteration of mouse oocyte quality after a subchronic exposure to depleted Uranium [J]. Reprod Toxicol, 2008, 26(3-4): 273-277. doi: 10.1016/j.reprotox.2008.09.011 [72] DINOCOURT C, LEGRAND M, DUBLINEAU I, et al. The neurotoxicology of uranium [J]. Toxicology, 2015, 337: 58-71. doi: 10.1016/j.tox.2015.08.004 [73] BRINER W, MURRAY J. Effects of short-term and long-term depleted uranium exposure on open-field behavior and brain lipid oxidation in rats [J]. Neurotoxicology and Teratology, 2005, 27(1): 135-144. doi: 10.1016/j.ntt.2004.09.001 [74] LEGRAND M, LAM S, ANSELME I, et al. Exposure to depleted uranium during development affects neuronal differentiation in the hippocampal dentate gyrus and induces depressive-like behavior in offspring [J]. NeuroToxicology, 2016, 57: 153-162. doi: 10.1016/j.neuro.2016.09.006 [75] SAINT-MARC B, ELIE C, MANENS L, et al. Chronic uranium contamination alters spinal motor neuron integrity via modulation of SMN1 expression and microglia recruitment [J]. Toxicology Letters, 2016, 254: 37-44. doi: 10.1016/j.toxlet.2016.05.004 [76] AL RASHIDA V J M, WANG X, MYERS O B, et al. Greater odds for angina in uranium miners than nonuranium miners in new Mexico [J]. Journal of Occupational and Environmental Medicine, 2019, 61(1): 1-7. doi: 10.1097/JOM.0000000000001482 [77] WAGNER S E, BURCH J B, BOTTAI M, et al. Groundwater uranium and cancer incidence in South Carolina [J]. Cancer Causes & Control, 2011, 22(1): 41-50. [78] GOODSON J M, HARDT M, HARTMAN M L, et al. Salivary N1-methyl-2-pyridone-5-carboxamide, a biomarker for uranium uptake, in Kuwaiti children exhibiting exceptional weight gain [J]. Frontiers in Endocrinology, 2019, 10: 382. doi: 10.3389/fendo.2019.00382 [79] WU W X, ZHANG K, JIANG S L, et al. Association of co-exposure to heavy metals with renal function in a hypertensive population [J]. Environment International, 2018, 112: 198-206. doi: 10.1016/j.envint.2017.12.023 [80] 朱寿彭, 王崇道, 王国林, 等. 用整体测量装置探讨胃肠道摄入难溶性浓缩铀—U3O8时的消失动态 [J]. 苏州医学院学报, 1984(4): 12-13. ZHU S P, WANG C D, WANG G L, et al. Study on the vanishing dynamics of insoluble enriched uranium -- U3O8 in gastrointestinal tract using a global measuring device [J]. Journal of Suzhou Medical College, 1984(4): 12-13(in Chinese).
[81] 朱寿彭, 胡启跃, 伦明跃. 环境污染物浓缩铀诱发雄性机体的生殖毒性研究 [J]. 环境科学学报, 1995, 15(1): 99-105. ZHU S P, HU Q Y, LUN M Y. Study on reproductive toxicity of male organism induced by environmental pollutant enriched uranium [J]. Acta Scientiae Circumstantiae, 1995, 15(1): 99-105(in Chinese).
[82] 杨陟华, 范保星, 陆颖, 等. 贫铀诱发人支气管上皮细胞恶性转化 [J]. 癌症, 2002, 21(9): 944-948. doi: 10.3321/j.issn:1000-467X.2002.09.004 YANG Z H, FAN B X, LU Y, et al. Malignant transformation of human bronchial epithelial cell (BEAS- 2B) induced by depleted uranium [J]. Chinese Journal of Cancer, 2002, 21(9): 944-948(in Chinese). doi: 10.3321/j.issn:1000-467X.2002.09.004
[83] Depleted uranium: sources, exposure and health effects[J]. Journal de Pharmacie de Belgique, 2001, 56 (3): 75-78. [84] UNSCEAR. Sources, effects and risks of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2016 Report[M]. New York: United Nations, 2017. [85] LAURENT O, GOMOLKA M, HAYLOCK R, et al. Concerted Uranium Research in Europe (CURE): Toward a collaborative project integrating dosimetry, epidemiology and radiobiology to study the effects of occupational uranium exposure [J]. J Radiol Prot, 2016, 36(2): 319-345. doi: 10.1088/0952-4746/36/2/319 [86] FAA A, GEROSA C, FANNI D, et al. Depleted uranium and human health [J]. Current Medicinal Chemistry, 2018, 25(1): 49-64. doi: 10.2174/0929867324666170426102343 [87] LUSHCHAK V I. Free radicals, reactive oxygen species, oxidative stress and its classification [J]. Chemico Biological Interactions, 2014, 224: 164-175. doi: 10.1016/j.cbi.2014.10.016 [88] MILLER A C, STEWART M, BROOKS K, et al. Depleted uranium-catalyzed oxidative DNA damage: absence of significant alpha particle decay [J]. Journal of Inorganic Biochemistry, 2002, 91(1): 246-252. doi: 10.1016/S0162-0134(02)00391-4 [89] POURAHMAD J, GHASHANG M, ETTEHADI H A, et al. A search for cellular and molecular mechanisms involved in depleted uranium (DU) toxicity [J]. Environmental Toxicology, 2006, 21(4): 349-354. doi: 10.1002/tox.20196 [90] YUAN Y, ZHENG J F, ZHAO T T, et al. Uranium-induced rat kidney cell cytotoxicity is mediated by decreased endogenous hydrogen sulfide (H2S) generation involved in reduced Nrf2 levels [J]. Toxicology Research, 2016, 5(2): 660-673. doi: 10.1039/C5TX00432B [91] GARMASH S A, SMIRNOVA V S, KARP O E, et al. Pro-oxidative, genotoxic and cytotoxic properties of uranyl ions [J]. Journal of Environmental Radioactivity, 2014, 127: 163-170. doi: 10.1016/j.jenvrad.2012.12.009 [92] STEARNS D M, YAZZIE M, BRADLEY A S, et al. Uranyl acetate induces hprt mutations and uranium-DNA adducts in Chinese hamster ovary EM9 cells [J]. Mutagenesis, 2005, 20(6): 417-423. doi: 10.1093/mutage/gei056 [93] JIN F, MA T, GUAN H, et al. Inhibitory effect of uranyl nitrate on DNA double-strand break repair by depression of a set of proteins in the homologous recombination pathway [J]. Toxicology Research, 2017, 6(5): 711-718. doi: 10.1039/C7TX00125H [94] VANHORN J, HUANG H. Uranium(Ⅵ) bio-coordination chemistry from biochemical, solution and protein structural data [J]. Coordination Chemistry Reviews, 2006, 250(7-8): 765-775. doi: 10.1016/j.ccr.2005.09.010 [95] PIBLE O, VIDAUD C, PLANTEVIN S, et al. Predicting the disruption by UO22+ of a protein-ligand interaction [J]. Protein Sci, 2010, 19(11): 2219-2230. doi: 10.1002/pro.501 [96] BARKLEIT A, HENNIG C, IKEDA-OHNO A. Interaction of uranium(Ⅵ) with α-amylase and its implication for enzyme activity [J]. Chemical Research in Toxicology, 2018, 31(10): 1032-1041. doi: 10.1021/acs.chemrestox.8b00106 [97] HÉMADI M, HA-DUONG N T, EL HAGE CHAHINE J M. Can uranium be transported by the iron-acquisition pathway?Ur uptake by transferrin [J]. The Journal of Physical Chemistry B, 2011, 115(14): 4206-4215. doi: 10.1021/jp111950c [98] XU M, FRELON S, SIMON O, et al. Development of a non-denaturing 2D gel electrophoresis protocol for screening in vivo uranium-protein targets in Procambarus clarkii with laser ablation ICP MS followed by protein identification by HPLC-Orbitrap MS [J]. Talanta, 2014, 128: 187-195. doi: 10.1016/j.talanta.2014.04.065 [99] XU M, FRELON S, SIMON O, et al. Non-denaturating isoelectric focusing gel electrophoresis for uranium-protein complexes quantitative analysis with LA-ICP MS [J]. Analytical and Bioanalytical Chemistry, 2014, 406(4): 1063-1072. doi: 10.1007/s00216-013-7033-8 [100] HUYNH T S, VIDAUD C, HAGEGE A. Investigation of uranium interactions with calcium phosphate-binding proteins using ICP/MS and CE-ICP/MS [J]. Metallomics, 2016, 8(11): 1185-1192. doi: 10.1039/C6MT00147E [101] BASSET C, AVERSENG O, FERRON P J, et al. Revision of the biodistribution of uranyl in serum: Is fetuin-A the major protein target? [J]. Chemical Research in Toxicology, 2013, 26(5): 645-653. doi: 10.1021/tx400048u [102] DUBLINEAU I, GRANDCOLAS L, GRISON S, et al. Modifications of inflammatory pathways in rat intestine following chronic ingestion of depleted uranium [J]. Toxicological Sciences, 2007, 98(2): 458-468. doi: 10.1093/toxsci/kfm132 [103] WAN B, FLEMING J T, SCHULTZ T W, et al. In vitro immune toxicity of depleted uranium: Effects on murine macrophages, CD4+ T cells, and gene expression profiles [J]. Environ Health Perspect, 2006, 114(1): 85-91. doi: 10.1289/ehp.8085 [104] DONNADIEU-CLARAZ M, BONNEHORGNE M, DHIEUX B, et al. Chronic exposure to uranium leads to iron accumulation in rat kidney cells [J]. Radiat Res, 2007, 167(4): 454-464. doi: 10.1667/RR0545.1 [105] SONG Y, SALBU B, TEIEN H C, et al. Hepatic transcriptomic profiling reveals early toxicological mechanisms of uranium in Atlantic salmon (Salmo salar) [J]. BMC Genomics, 2014, 15: 694. doi: 10.1186/1471-2164-15-694 [106] TISSANDIE E, GUEGUEN Y, LOBACCARO J M A, et al. Enriched uranium affects the expression of vitamin D receptor and retinoid X receptor in rat kidney [J]. Journal of Steroid Biochemistry and Molecular Biology, 2008, 110(3-5): 263-268. doi: 10.1016/j.jsbmb.2007.11.002 [107] TISSANDIE E, GUEGUEN Y, LOBACCARO J M A, et al. In vivo effects of chronic contamination with depleted uranium on vitamin D-3 metabolism in rat [J]. Biochimica Et Biophysica Acta-General Subjects, 2007, 1770(2): 266-272. doi: 10.1016/j.bbagen.2006.10.006 [108] HAN S I, KIM Y S, KIM T H. Role of apoptotic and necrotic cell death under physiologic conditions [J]. BMB Reports, 2008, 41(1): 1-10. doi: 10.5483/BMBRep.2008.41.1.001 [109] HAO Y H, LIU C, HUANG J W, et al. Ghrelin protects against depleted uranium-induced apoptosis of MC3T3-E1 cells through oxidative stress-mediated p38-mitogen-activated protein kinase pathway [J]. Toxicology and Applied Pharmacology, 2016, 290: 116-125. doi: 10.1016/j.taap.2015.10.022 [110] HAO Y H, REN J, LIU C, et al. Zinc protects human kidney cells from depleted uranium-induced apoptosis [J]. Basic & Clinical Pharmacology & Toxicology, 2014, 114(3): 271-280. [111] PIERREFITE-CARLE V, SANTUCCI-DARMANIN S, BREUIL V, et al. Effect of natural uranium on the UMR-106 osteoblastic cell line: Impairment of the autophagic process as an underlying mechanism of uranium toxicity [J]. Archives of Toxicology, 2017, 91(4): 1903-1914. doi: 10.1007/s00204-016-1833-5 [112] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国推荐性国家标准: 地下水质量标准 GB/T 14848—2017[S]. 北京: 中国标准出版社, 2017. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. National Standard (Recommended) of the People's Republic of China: Standard for groundwater quality. GB/T 14848—2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
[113] 中华人民共和国卫生部, 中国国家标准化管理委员会. 中华人民共和国国家标准: 生活饮用水卫生标准 GB 5749—2006[S]. 北京: 中国标准出版社, 2007. Ministry of Health of the People's Republic of China, Standardization Administration of the People's Republic of China. National Standard (Mandatory) of the People's Republic of China: Standards for drinking water quality. GB 5749—2006[S]. Beijing: Standards Press of China, 2007(in Chinese).
[114] SELDÉN A I, LUNDHOLM C, EDLUND B, et al. Nephrotoxicity of uranium in drinking water from private drilled wells [J]. Environmental Research, 2009, 109(4): 486-494. doi: 10.1016/j.envres.2009.02.002 [115] LING L, ZHANG W X. Enrichment and encapsulation of uranium with iron nanoparticle [J]. Journal of the American Chemical Society, 2015, 137(8): 2788-2791. doi: 10.1021/ja510488r [116] WANG X, CHEN L, BAI Z, et al. In vivo uranium sequestration using a nanoscale metal–organic framework [J]. Angewandte Chemie International Edition, 2021, 60(3): 1646-1650. doi: 10.1002/anie.202012512 [117] ZHANG H L, LIU W, LI A, et al. Three mechanisms in one material: Uranium capture by a polyoxometalate-organic framework through combined complexation, chemical reduction, and photocatalytic reduction [J]. Angewandte Chemie (International Ed. in English), 2019, 58(45): 16110-16114. doi: 10.1002/anie.201909718 [118] KEENER M, HUNT C, CARROLL T G, et al. Redox-switchable carboranes for uranium capture and release [J]. Nature, 2020, 577(7792): 652-655. doi: 10.1038/s41586-019-1926-4 [119] WANG X M, WU S Q, GUAN J W, et al. 3-hydroxy-2-pyrrolidinone as a potential bidentate ligand for in vivo chelation of uranyl with low cytotoxicity and moderate decorporation efficacy: A solution thermodynamics, structural chemistry, and in vivo uranyl removal survey [J]. Inorganic Chemistry, 2019, 58(5): 3349-3354. doi: 10.1021/acs.inorgchem.8b03442 [120] WANG X, DAI X, SHI C, et al. A 3,2-Hydroxypyridinone-based decorporation agent that removes uranium from bones in vivo [J]. Nature Communications, 2019, 10(1): 2570. doi: 10.1038/s41467-019-10276-z