地下水铀污染与饮用水中铀的健康风险

王煦栋, 刘思金, 徐明. 地下水铀污染与饮用水中铀的健康风险[J]. 环境化学, 2021, 40(6): 1631-1642. doi: 10.7524/j.issn.0254-6108.2021021804
引用本文: 王煦栋, 刘思金, 徐明. 地下水铀污染与饮用水中铀的健康风险[J]. 环境化学, 2021, 40(6): 1631-1642. doi: 10.7524/j.issn.0254-6108.2021021804
WANG Xudong, LIU Sijin, XU Ming. Uranium contamination in groundwater and health risks of uranium in drinking water[J]. Environmental Chemistry, 2021, 40(6): 1631-1642. doi: 10.7524/j.issn.0254-6108.2021021804
Citation: WANG Xudong, LIU Sijin, XU Ming. Uranium contamination in groundwater and health risks of uranium in drinking water[J]. Environmental Chemistry, 2021, 40(6): 1631-1642. doi: 10.7524/j.issn.0254-6108.2021021804

地下水铀污染与饮用水中铀的健康风险

    通讯作者: E-mail:mingxu@rcees.ac.cn
  • 基金项目:
    国家自然科学基金(21922611),中国科学院青年创新促进会(2019042),中国科学院B类先导科技专项培育项目(XDPB2004)和中国科学院生态环境研究中心臭氧追因与控制专项项目(RCEES-CYZX-2020)资助

Uranium contamination in groundwater and health risks of uranium in drinking water

    Corresponding author: XU Ming, mingxu@rcees.ac.cn
  • Fund Project: the National Natural Science Foundation of China (21922611), the Youth Innovation Promotion Association CAS (2019042) ,Strategic Priority Research Program of the Chinese Academy of Sciences (XDPB2004)and Ozone Formation Mechanism and Control Strategies Project of Research Center for Eco-Environmental Sciences CAS (RCEES-CYZX-2020)
  • 摘要: 铀广泛存在于地壳中,是一种重要的战略资源。受自然和人为因素影响,铀可以被释放到天然水体中,造成地下水的铀污染,进而带来潜在的生态环境与人体健康风险。作为一种锕系元素,铀同时具有放射毒性与化学毒性。由于铀的天然同位素均具有较长的半衰期,且自然环境中铀的人体暴露具有低剂量、长周期的特点,地下水铀污染的健康风险主要体现为化学毒性。为更好地了解地下水铀污染的研究现状,本文综述了近年来针对地下水铀污染的最新研究进展。首先,简要概括了铀的物理化学性质和地质分布特征,以及地下水铀污染的主要来源。其次,重点介绍了饮用水铀暴露的人体健康风险及毒性作用机理。最后,对饮用水铀暴露的毒理健康研究相关的问题与挑战进行了展望。
  • 加载中
  • 图 1  铀污染相关研究论文的发表情况

    Figure 1.  Published papers on uranium contaminations

    图 2  饮用水中铀的健康风险

    Figure 2.  Health risks from uranium in drinking water

    表 1  我国典型的水体铀污染案例

    Table 1.  Representative cases of uranium contamination in water bodies in China

    区域
    Region
    水体
    Water body
    铀平均浓度/(μg·L−1)
    Average uranium concentration
    参考文献
    Reference
    广东,翁源县河水190.4[7]
    广东,北部某铀尾矿下降泉75.45[8]
    潜水9.16
    四川,绵远河河水1.64[9]
    内蒙古,河套平原地下水6.38[10]
    山西,大同盆地浅层地下水24[11]
    江西,临水河河水0.89[12]
    广东与江西交界,某铀矿区溪水354[13]
    区域
    Region
    水体
    Water body
    铀平均浓度/(μg·L−1)
    Average uranium concentration
    参考文献
    Reference
    广东,翁源县河水190.4[7]
    广东,北部某铀尾矿下降泉75.45[8]
    潜水9.16
    四川,绵远河河水1.64[9]
    内蒙古,河套平原地下水6.38[10]
    山西,大同盆地浅层地下水24[11]
    江西,临水河河水0.89[12]
    广东与江西交界,某铀矿区溪水354[13]
    下载: 导出CSV
  • [1] SRIDHARA G R, MANJUNATHA H C, SRIDHAR K N, et al. Systematic study of the alpha α decay properties of actinides [J]. Pramana, 2019, 93(5): 1-14.
    [2] MAHER K, BARGAR J R, BROWN G E. Environmental speciation of actinides [J]. Inorganic Chemistry, 2013, 52(7): 3510-3532. doi: 10.1021/ic301686d
    [3] KEITH L S, FAROON O M, FOWLER B A. Chapter 59 - Uranium*//NORDBERG G F, FOWLER B A, NORDBERG M. Handbook on the toxicology of metals (Fourth Edition)[M]. San Diego: Academic Press, 2015: 1307-1345.
    [4] ROMANCHUK A Y, VLASOVA I E, KALMYKOV S N. Speciation of uranium and plutonium from nuclear legacy sites to the environment: A mini review [J]. Frontiers in Chemistry, 2020, 8: 630. doi: 10.3389/fchem.2020.00630
    [5] VODYANITSKII Y N. Chemical aspects of uranium behavior in soils: A review [J]. Eurasian Soil Science, 2011, 44(8): 862-873. doi: 10.1134/S1064229311080163
    [6] MA M H, WANG R X, XU L N, et al. Emerging health risks and underlying toxicological mechanisms of uranium contamination: Lessons from the past two decades [J]. Environment International, 2020, 145: 106107. doi: 10.1016/j.envint.2020.106107
    [7] WANG Z H, QIN H Y, LIU X Y. Health risk assessment of heavy metals in the soil-water-rice system around the Xiazhuang uranium mine, China [J]. Environmental Science and Pollution Research, 2019, 26(6): 5904-5912. doi: 10.1007/s11356-018-3955-1
    [8] 齐文, 高柏, 陈井影, 等. 某铀尾矿库周边水环境中铀的分布特征及评价 [J]. 有色金属(冶炼部分), 2016(5): 53-56.

    QI W, GAO B, CHEN J Y, et al. Uranium distribution characteristics and evaluation in water environment surrounding uranium tailings [J]. Nonferrous Metals (Extractive Metallurgy), 2016(5): 53-56(in Chinese).

    [9] 王新宇, 倪师军, 施泽明. 磷矿影响区——绵远河铀含量分析与形态计算 [J]. 地球科学进展, 2012, 27(S1): 426.

    WANG X Y, NI S J, SHI Z M. Analysis and speciation calculation of uranium content in Mianyuanhe, a phosphate ore affected area [J]. Advances in Earth Sciences, 2012, 27(S1): 426(in Chinese).

    [10] 赵威光, 郭华明, 张莉, 等. 河套平原沉积物中铀的赋存形态及其与地下水铀浓度的关系 [J]. 水文地质工程地质, 2015, 42(2): 24-30, 37.

    ZHAO W G, GUO H M, ZHANG L, et al. Uranium forms in sediments and their relation with groundwater uranium: A case study in the Hetao basin [J]. Hydrogeology and Engineering Geology, 2015, 42(2): 24-30, 37(in Chinese).

    [11] WU Y, WANG Y X, XIE X J. Occurrence, behavior and distribution of high levels of uranium in shallow groundwater at Datong basin, Northern China [J]. The Science of the Total Environment, 2014, 472: 809-817. doi: 10.1016/j.scitotenv.2013.11.109
    [12] HE L, GAO B, LUO X, et al. Health risk assessment of heavy metals in surface water near a uranium Tailing Pond in Jiangxi Province, South China [J]. Sustainability, 2018, 10(4): 1113. doi: 10.3390/su10041113
    [13] 宋刚, 冯颖思, 王津, 等. 某铀尾矿库下游水体及表层沉积物中铀污染特征 [J]. 环境科学与技术, 2013, 36(9): 159-162, 168. doi: 10.3969/j.issn.1003-6504.2013.09.033

    SONG G, FENG Y S, WANG J, et al. Pollution of uranium contents in water and surface deposit downstream of a uranium tailing repository [J]. Environmental Science & Technology, 2013, 36(9): 159-162, 168(in Chinese). doi: 10.3969/j.issn.1003-6504.2013.09.033

    [14] STEFFANOWSKI J, BANNING A. Uraniferous dolomite: A natural source of high groundwater uranium concentrations in northern Bavaria, Germany? [J]. Environmental Earth Sciences, 2017, 76(15): 1-11.
    [15] NOLAN J, WEBER K A. Natural uranium contamination in major U. S. aquifers linked to nitrate [J]. Environmental Science & Technology Letters, 2015, 2(8): 215-220.
    [16] COYTE R, JAIN R C, SRIVASTAVA S K, et al. Large-scale uranium contamination of groundwater resources in India [J]. Environmental Science & Technology Letters, 2018, 5(6): 341-347.
    [17] NRIAGU J, NAM D H, AYANWOLA T A, et al. High levels of uranium in groundwater of Ulaanbaatar, Mongolia [J]. Sci Total Environ, 2012, 414: 722-726. doi: 10.1016/j.scitotenv.2011.11.037
    [18] GODOY J, FERREIRA P, DE SOUZA E, et al. High uranium concentrations in the groundwater of the Rio de Janeiro State, Brazil, Mountainous Region [J]. Journal of the Brazilian Chemical Society, 2019(2): 224-233.
    [19] ZHAOBO C, FENGMIN Z, WEIDONG X, et al. Uranium provinces in China [J]. Acta Geologica Sinica - English Edition, 2000, 74(3): 587-594.
    [20] JIANG X, YU Z, KU T L, et al. Distribution of uranium isotopes in the main channel of Yellow river (Huanghe), China [J]. Continental Shelf Research, 2009, 29(4): 719-727. doi: 10.1016/j.csr.2008.12.004
    [21] WU Y, WANG Y X, GUO W. Behavior and fate of geogenic uranium in a shallow groundwater system [J]. Journal of Contaminant Hydrology, 2019, 222: 41-55. doi: 10.1016/j.jconhyd.2019.02.009
    [22] GUO H M, ZHAO W G, LI H L, et al. High radionuclides in groundwater of an inland basin from northwest China: Origin and fate [J]. ACS Earth and Space Chemistry, 2018, 2(11): 1137-1144. doi: 10.1021/acsearthspacechem.8b00108
    [23] GUO H M, JIA Y F, WANTY R B, et al. Contrasting distributions of groundwater arsenic and uranium in the western Hetao basin, Inner Mongolia: Implication for origins and fate controls [J]. Science of the Total Environment, 2016, 541: 1172-1190. doi: 10.1016/j.scitotenv.2015.10.018
    [24] BOWMAN, ROBERT S. Aqueous environmental geochemistry [J]. Eos Transactions American Geophysical Union, 1997, 78(50): 586.
    [25] NAVARRO A, FONT X, VILADEVALL M. Groundwater contamination by uranium and mercury at the Ridaura Aquifer (Girona, NE Spain) [J]. Toxics, 2016, 4(3): 16. doi: 10.3390/toxics4030016
    [26] DAHLKAMP, FRANZ J. Uranium deposits of the world[M]. Berlin: Springer Berlin Heidelberg, 2010.
    [27] KOBETS S A, PSHINKO G N, PUZYRNAYA L N. Uranium (VI) in natural waters: Study of occurrence forms [J]. Journal of Water Chemistry and Technology, 2012, 34(6): 277-283. doi: 10.3103/S1063455X12060057
    [28] LIU B, PENG T J, SUN H J, et al. Release behavior of uranium in uranium mill tailings under environmental conditions [J]. Journal of Environmental Radioactivity, 2017, 171: 160-168. doi: 10.1016/j.jenvrad.2017.02.016
    [29] WANG X, NI S, SHI Z. Uranium distribution in the sediment of the Mianyuan River near a phosphate mining region in China and the related uranium speciation in water [J]. Geochemistry, 2014, 74(4): 661-669. doi: 10.1016/j.chemer.2014.03.001
    [30] JERDEN J L, SINHA A K. Phosphate based immobilization of uranium in an oxidizing bedrock aquifer [J]. Applied Geochemistry, 2003, 18(6): 823-843. doi: 10.1016/S0883-2927(02)00179-8
    [31] SCHNUG E, LOTTERMOSER B G. Fertilizer-derived uranium and its threat to human health [J]. Environmental Science & Technology, 2013, 47(6): 2433-2434.
    [32] 孙占学, 刘媛媛, 马文洁, 等. 铀矿区地下水及其生态安全研究进展 [J]. 地学前缘, 2014, 21(4): 158-167.

    SUN Z X, LIU Y Y, MA W J, et al. A review on the study of groundwater and its ecological securities in uranium mining areas [J]. Earth Science Frontiers, 2014, 21(4): 158-167(in Chinese).

    [33] 焦养泉, 吴立群, 荣辉等. 中国盆地铀资源概述[J/OL]. [2021-03-13].地球科学: http://kns.cnki.net/kcms/detail/42.1874.P.20201111.1334.002.html.

    JIAO Y Q, WU L Q, RONG H, et al. The basin uranium resources overview [J/OL]. [2021-03-13]. Earth Science http://kns.cnki.net/kcms/detail/42.1874.P.20201111.1334.002.html(in Chinese).

    [34] MIN M Z, XU H F, CHEN J, et al. Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China [J]. Ore Geology Reviews, 2005, 26(3/4): 198-206.
    [35] WANG J, LIU J, LI H C, et al. Uranium and thorium leachability in contaminated stream sediments from a uranium minesite [J]. Journal of Geochemical Exploration, 2017, 176: 85-90. doi: 10.1016/j.gexplo.2016.01.008
    [36] 刘娟, 李红春, 王津, 等. 华南某铀矿开采利用对地表水环境质量的影响 [J]. 环境化学, 2012, 31(7): 981-989.

    LIU J, LI H C, WANG J, et al. Environmental quality of surface waters in a uranium industrial site in South China [J]. Environmental Chemistry, 2012, 31(7): 981-989(in Chinese).

    [37] 张春艳, 占凌之, 华恩祥, 等. 某铀尾矿库周边地下水的水化学特征分析 [J]. 环境化学, 2015, 34(11): 2103-2108. doi: 10.7524/j.issn.0254-6108.2015.11.2015070901

    ZHANG C Y, ZHAN L Z, HUA E X, et al. Analysis on hydrochemical characteristics of groundwater in uranium tailing pond [J]. Environmental Chemistry, 2015, 34(11): 2103-2108(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.11.2015070901

    [38] HUANG W H, WAN H, FINKELMAN R B, et al. Distribution of uranium in the main coalfields of China [J]. Energy Exploration & Exploitation, 2012, 30(5): 819-835.
    [39] CHEN J, CHEN P, YAO D X, et al. Geochemistry of uranium in Chinese coals and the emission inventory of coal-fired power plants in China [J]. International Geology Review, 2018, 60(5/6): 621-637.
    [40] 王红海, 张麟熹, 许乃政, 等. 江西省修水县石煤矿区放射性环境调查与评价 [J]. 辐射防护, 2017, 37(6): 476-482.

    WANG H H, ZHANG L X, XU N Z, et al. Investigation and evaluation of radioactive environment in a bone coal mine area in Xiushui County, Jiangxi Province [J]. Radiation Protection, 2017, 37(6): 476-482(in Chinese).

    [41] 阿种明, 郭超, 李书海, 等. 伊犁盆地北缘煤炭开发区水放射性特征简析 [J]. 新疆地质, 2017, 35(3): 341-345. doi: 10.3969/j.issn.1000-8845.2017.03.020

    A Z M, GUO C, LI S H, et al. The characteristics of water radioactivity in the coal mining area from the northern margin of Yili basin [J]. Xinjiang Geology, 2017, 35(3): 341-345(in Chinese). doi: 10.3969/j.issn.1000-8845.2017.03.020

    [42] SCHIPPER L A, SPARLING G P, FISK L M, et al. Rates of accumulation of cadmium and uranium in a New Zealand hill farm soil as a result of long-term use of phosphate fertilizer [J]. Agriculture, Ecosystems & Environment, 2011, 144(1): 95-101.
    [43] KRATZ S, SCHNUG E. Rock phosphates and P fertilizers as sources of U contamination in agricultural soils//MERKEL B J, HASCHE-BERGER A. Uranium in the Environment: Mining Impact and Consequences[M]. Berlin: Heidelberg; Springer Berlin Heidelberg, 2006: 57-67.
    [44] 邓冰, 王和义, 蒋树斌, 等. 铀在小鼠体内的分布及其影响因素的初步探讨 [J]. 环境化学, 2011, 30(7): 1247-1252.

    DENG B, WANG H Y, JIANG S B, et al. The biodistribution of uranium in mice [J]. Environmental Chemistry, 2011, 30(7): 1247-1252(in Chinese).

    [45] KEITH S, FAROON O, RONEY N, et al. Toxicological profile for uranium[M]. Atlanta: Agency for Toxic Substances and Disease Registry (US), Atlanta (GA), 2013.
    [46] XIANG L, LIU P H, JIANG X F, et al. Health risk assessment and spatial distribution characteristics of heavy metal pollution in rice samples from a surrounding hydrometallurgy plant area in No. 721 uranium mining, East China [J]. Journal of Geochemical Exploration, 2019, 207: 9.
    [47] WUFUER R, SONG W J, ZHANG D Y, et al. A survey of uranium levels in urine and hair of people living in a coal mining area in Yili, Xinjiang, China [J]. Journal of Environmental Radioactivity, 2018, 189: 168-174. doi: 10.1016/j.jenvrad.2018.04.009
    [48] HAO Z, LI Y, LI H, et al. Levels of rare earth elements, heavy metals and uranium in a population living in Baiyun Obo, Inner Mongolia, China: A pilot study [J]. Chemosphere, 2015, 128: 161-170. doi: 10.1016/j.chemosphere.2015.01.057
    [49] JIA Y F, XI B D, JIANG Y H, et al. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review [J]. The Science of the Total Environment, 2018, 643: 967-993. doi: 10.1016/j.scitotenv.2018.06.201
    [50] ANSOBORLO E, LEBARON-JACOBS L, PRAT O. Uranium in drinking-water: A unique case of guideline value increases and discrepancies between chemical and radiochemical guidelines [J]. Environment International, 2015, 77: 1-4. doi: 10.1016/j.envint.2014.12.011
    [51] CHEN L Z, MA T, WANG Y X, et al. Health risks associated with multiple metal(loid)s in groundwater: A case study at Hetao Plain, northern China [J]. Environmental Pollution, 2020, 263: 9.
    [52] ARZUAGA X, RIETH S H, BATHIJA A, et al. Renal effects of exposure to natural and depleted uranium: A review of the epidemiologic and experimental data [J]. Journal of Toxicology and Environmental Health, Part B, 2010, 13(7/8): 527-545.
    [53] ZAMORA M L, TRACY B L, ZIELINSKI J M, et al. Chronic ingestion of uranium in drinking water: A study of kidney bioeffects in humans [J]. Toxicological Sciences, 1998, 43(1): 68-77. doi: 10.1093/toxsci/43.1.68
    [54] KURTTIO P, AUVINEN A, SALONEN L, et al. Renal effects of uranium in drinking water [J]. Environmental Health Perspectives, 2002, 110(4): 337-342. doi: 10.1289/ehp.02110337
    [55] HOMMA-TAKEDA S, KOKUBO T, TERADA Y, et al. Uranium dynamics and developmental sensitivity in rat kidney [J]. Journal of Applied Toxicology, 2013, 33(7): 685-694. doi: 10.1002/jat.2870
    [56] YI J, YUAN Y, ZHENG J F, et al. Hydrogen sulfide alleviates uranium-induced kidney cell apoptosis mediated by ER stress via 20S proteasome involving in Akt/GSK-3 beta/Fyn-Nrf2 signaling [J]. Free Radical Research, 2018, 52(9): 1020-1029. doi: 10.1080/10715762.2018.1514603
    [57] BRUGGE D, DE LEMOS J L, OLDMIXON B. Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: A review [J]. Reviews on Environmental Health, 2005, 20(3): 177-193.
    [58] LARIVIERE D, PACKER A P, MARRO L, et al. Age dependence of natural uranium and thorium concentrations in bone [J]. Health Physics, 2007, 92(2): 119-126. doi: 10.1097/01.HP.0000237665.63377.8f
    [59] LIANQING L, GUIYUN L. Uranium concentration in bone of Beijing (China) residents [J]. The Science of the Total Environment, 1990, 90: 267-272. doi: 10.1016/0048-9697(90)90198-4
    [60] KURTTIO P, KOMULAINEN H, LEINO A, et al. Bone as a possible target of chemical toxicity of natural uranium in drinking water [J]. Environmental Health Perspectives, 2005, 113(1): 68-72. doi: 10.1289/ehp.7475
    [61] RODRIGUES G, ARRUDA-NETO J D T, PEREIRA R M R, et al. Uranium deposition in bones of Wistar rats associated with skeleton development [J]. Applied Radiation and Isotopes, 2013, 82: 105-110. doi: 10.1016/j.apradiso.2013.07.033
    [62] ARZUAGA X, GEHLHAUS M, STRONG J. Modes of action associated with uranium induced adverse effects in bone function and development [J]. Toxicology Letters, 2015, 236(2): 123-130. doi: 10.1016/j.toxlet.2015.05.006
    [63] GUÉGUEN Y, SOUIDI M, BAUDELIN C, et al. Short-term hepatic effects of depleted uranium on xenobiotic and bile acid metabolizing cytochrome P450 enzymes in the rat [J]. Archives of Toxicology, 2006, 80(4): 187-195. doi: 10.1007/s00204-005-0027-3
    [64] DUBLINEAU I, SOUIDI M, GUEGUEN Y, et al. Unexpected lack of deleterious effects of uranium on physiological systems following a chronic oral intake in adult rat [J]. BioMed Research International, 2014, 2014: 181989.
    [65] SOUIDI M, GUEGUEN Y, LINARD C, et al. In vivo effects of chronic contamination with depleted uranium on CYP3A and associated nuclear receptors PXR and CAR in the rat [J]. Toxicology, 2005, 214(1-2): 113-122. doi: 10.1016/j.tox.2005.06.006
    [66] YAPAR K, CAVUSOGLU K, ORUC E, et al. Protective role of ginkgo biloba against hepatotoxicity and nephrotoxicity in uranium-treated mice [J]. Journal of Medicinal Food, 2010, 13(1): 179-188. doi: 10.1089/jmf.2009.0028
    [67] WANG S, RAN Y H, LU B H, et al. A review of uranium-induced reproductive toxicity [J]. Biological Trace Element Research, 2020, 196(1): 204-213. doi: 10.1007/s12011-019-01920-2
    [68] DOMINGO J L. Reproductive and developmental toxicity of natural and depleted uranium: A review [J]. Reproductive Toxicology, 2001, 15(6): 603-609. doi: 10.1016/S0890-6238(01)00181-2
    [69] ZHANG W P, LIU W, BAO S S, et al. Association of adverse birth outcomes with prenatal uranium exposure: A population-based cohort study [J]. Environment International, 2020, 135: 105391. doi: 10.1016/j.envint.2019.105391
    [70] LEGENDRE A, ELMHIRI G, GLOAGUEN C, et al. Multigenerational exposure to uranium changes morphometric parameters and global DNA methylation in rat sperm [J]. Comptes Rendus. Biologies, 2019, 342(5/6): 175-185.
    [71] FEUGIER A, FRELON S, GOURMELON P, et al. Alteration of mouse oocyte quality after a subchronic exposure to depleted Uranium [J]. Reprod Toxicol, 2008, 26(3-4): 273-277. doi: 10.1016/j.reprotox.2008.09.011
    [72] DINOCOURT C, LEGRAND M, DUBLINEAU I, et al. The neurotoxicology of uranium [J]. Toxicology, 2015, 337: 58-71. doi: 10.1016/j.tox.2015.08.004
    [73] BRINER W, MURRAY J. Effects of short-term and long-term depleted uranium exposure on open-field behavior and brain lipid oxidation in rats [J]. Neurotoxicology and Teratology, 2005, 27(1): 135-144. doi: 10.1016/j.ntt.2004.09.001
    [74] LEGRAND M, LAM S, ANSELME I, et al. Exposure to depleted uranium during development affects neuronal differentiation in the hippocampal dentate gyrus and induces depressive-like behavior in offspring [J]. NeuroToxicology, 2016, 57: 153-162. doi: 10.1016/j.neuro.2016.09.006
    [75] SAINT-MARC B, ELIE C, MANENS L, et al. Chronic uranium contamination alters spinal motor neuron integrity via modulation of SMN1 expression and microglia recruitment [J]. Toxicology Letters, 2016, 254: 37-44. doi: 10.1016/j.toxlet.2016.05.004
    [76] AL RASHIDA V J M, WANG X, MYERS O B, et al. Greater odds for angina in uranium miners than nonuranium miners in new Mexico [J]. Journal of Occupational and Environmental Medicine, 2019, 61(1): 1-7. doi: 10.1097/JOM.0000000000001482
    [77] WAGNER S E, BURCH J B, BOTTAI M, et al. Groundwater uranium and cancer incidence in South Carolina [J]. Cancer Causes & Control, 2011, 22(1): 41-50.
    [78] GOODSON J M, HARDT M, HARTMAN M L, et al. Salivary N1-methyl-2-pyridone-5-carboxamide, a biomarker for uranium uptake, in Kuwaiti children exhibiting exceptional weight gain [J]. Frontiers in Endocrinology, 2019, 10: 382. doi: 10.3389/fendo.2019.00382
    [79] WU W X, ZHANG K, JIANG S L, et al. Association of co-exposure to heavy metals with renal function in a hypertensive population [J]. Environment International, 2018, 112: 198-206. doi: 10.1016/j.envint.2017.12.023
    [80] 朱寿彭, 王崇道, 王国林, 等. 用整体测量装置探讨胃肠道摄入难溶性浓缩铀—U3O8时的消失动态 [J]. 苏州医学院学报, 1984(4): 12-13.

    ZHU S P, WANG C D, WANG G L, et al. Study on the vanishing dynamics of insoluble enriched uranium -- U3O8 in gastrointestinal tract using a global measuring device [J]. Journal of Suzhou Medical College, 1984(4): 12-13(in Chinese).

    [81] 朱寿彭, 胡启跃, 伦明跃. 环境污染物浓缩铀诱发雄性机体的生殖毒性研究 [J]. 环境科学学报, 1995, 15(1): 99-105.

    ZHU S P, HU Q Y, LUN M Y. Study on reproductive toxicity of male organism induced by environmental pollutant enriched uranium [J]. Acta Scientiae Circumstantiae, 1995, 15(1): 99-105(in Chinese).

    [82] 杨陟华, 范保星, 陆颖, 等. 贫铀诱发人支气管上皮细胞恶性转化 [J]. 癌症, 2002, 21(9): 944-948. doi: 10.3321/j.issn:1000-467X.2002.09.004

    YANG Z H, FAN B X, LU Y, et al. Malignant transformation of human bronchial epithelial cell (BEAS- 2B) induced by depleted uranium [J]. Chinese Journal of Cancer, 2002, 21(9): 944-948(in Chinese). doi: 10.3321/j.issn:1000-467X.2002.09.004

    [83] Depleted uranium: sources, exposure and health effects[J]. Journal de Pharmacie de Belgique, 2001, 56 (3): 75-78.
    [84] UNSCEAR. Sources, effects and risks of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2016 Report[M]. New York: United Nations, 2017.
    [85] LAURENT O, GOMOLKA M, HAYLOCK R, et al. Concerted Uranium Research in Europe (CURE): Toward a collaborative project integrating dosimetry, epidemiology and radiobiology to study the effects of occupational uranium exposure [J]. J Radiol Prot, 2016, 36(2): 319-345. doi: 10.1088/0952-4746/36/2/319
    [86] FAA A, GEROSA C, FANNI D, et al. Depleted uranium and human health [J]. Current Medicinal Chemistry, 2018, 25(1): 49-64. doi: 10.2174/0929867324666170426102343
    [87] LUSHCHAK V I. Free radicals, reactive oxygen species, oxidative stress and its classification [J]. Chemico Biological Interactions, 2014, 224: 164-175. doi: 10.1016/j.cbi.2014.10.016
    [88] MILLER A C, STEWART M, BROOKS K, et al. Depleted uranium-catalyzed oxidative DNA damage: absence of significant alpha particle decay [J]. Journal of Inorganic Biochemistry, 2002, 91(1): 246-252. doi: 10.1016/S0162-0134(02)00391-4
    [89] POURAHMAD J, GHASHANG M, ETTEHADI H A, et al. A search for cellular and molecular mechanisms involved in depleted uranium (DU) toxicity [J]. Environmental Toxicology, 2006, 21(4): 349-354. doi: 10.1002/tox.20196
    [90] YUAN Y, ZHENG J F, ZHAO T T, et al. Uranium-induced rat kidney cell cytotoxicity is mediated by decreased endogenous hydrogen sulfide (H2S) generation involved in reduced Nrf2 levels [J]. Toxicology Research, 2016, 5(2): 660-673. doi: 10.1039/C5TX00432B
    [91] GARMASH S A, SMIRNOVA V S, KARP O E, et al. Pro-oxidative, genotoxic and cytotoxic properties of uranyl ions [J]. Journal of Environmental Radioactivity, 2014, 127: 163-170. doi: 10.1016/j.jenvrad.2012.12.009
    [92] STEARNS D M, YAZZIE M, BRADLEY A S, et al. Uranyl acetate induces hprt mutations and uranium-DNA adducts in Chinese hamster ovary EM9 cells [J]. Mutagenesis, 2005, 20(6): 417-423. doi: 10.1093/mutage/gei056
    [93] JIN F, MA T, GUAN H, et al. Inhibitory effect of uranyl nitrate on DNA double-strand break repair by depression of a set of proteins in the homologous recombination pathway [J]. Toxicology Research, 2017, 6(5): 711-718. doi: 10.1039/C7TX00125H
    [94] VANHORN J, HUANG H. Uranium(Ⅵ) bio-coordination chemistry from biochemical, solution and protein structural data [J]. Coordination Chemistry Reviews, 2006, 250(7-8): 765-775. doi: 10.1016/j.ccr.2005.09.010
    [95] PIBLE O, VIDAUD C, PLANTEVIN S, et al. Predicting the disruption by UO22+ of a protein-ligand interaction [J]. Protein Sci, 2010, 19(11): 2219-2230. doi: 10.1002/pro.501
    [96] BARKLEIT A, HENNIG C, IKEDA-OHNO A. Interaction of uranium(Ⅵ) with α-amylase and its implication for enzyme activity [J]. Chemical Research in Toxicology, 2018, 31(10): 1032-1041. doi: 10.1021/acs.chemrestox.8b00106
    [97] HÉMADI M, HA-DUONG N T, EL HAGE CHAHINE J M. Can uranium be transported by the iron-acquisition pathway?Ur uptake by transferrin [J]. The Journal of Physical Chemistry B, 2011, 115(14): 4206-4215. doi: 10.1021/jp111950c
    [98] XU M, FRELON S, SIMON O, et al. Development of a non-denaturing 2D gel electrophoresis protocol for screening in vivo uranium-protein targets in Procambarus clarkii with laser ablation ICP MS followed by protein identification by HPLC-Orbitrap MS [J]. Talanta, 2014, 128: 187-195. doi: 10.1016/j.talanta.2014.04.065
    [99] XU M, FRELON S, SIMON O, et al. Non-denaturating isoelectric focusing gel electrophoresis for uranium-protein complexes quantitative analysis with LA-ICP MS [J]. Analytical and Bioanalytical Chemistry, 2014, 406(4): 1063-1072. doi: 10.1007/s00216-013-7033-8
    [100] HUYNH T S, VIDAUD C, HAGEGE A. Investigation of uranium interactions with calcium phosphate-binding proteins using ICP/MS and CE-ICP/MS [J]. Metallomics, 2016, 8(11): 1185-1192. doi: 10.1039/C6MT00147E
    [101] BASSET C, AVERSENG O, FERRON P J, et al. Revision of the biodistribution of uranyl in serum: Is fetuin-A the major protein target? [J]. Chemical Research in Toxicology, 2013, 26(5): 645-653. doi: 10.1021/tx400048u
    [102] DUBLINEAU I, GRANDCOLAS L, GRISON S, et al. Modifications of inflammatory pathways in rat intestine following chronic ingestion of depleted uranium [J]. Toxicological Sciences, 2007, 98(2): 458-468. doi: 10.1093/toxsci/kfm132
    [103] WAN B, FLEMING J T, SCHULTZ T W, et al. In vitro immune toxicity of depleted uranium: Effects on murine macrophages, CD4+ T cells, and gene expression profiles [J]. Environ Health Perspect, 2006, 114(1): 85-91. doi: 10.1289/ehp.8085
    [104] DONNADIEU-CLARAZ M, BONNEHORGNE M, DHIEUX B, et al. Chronic exposure to uranium leads to iron accumulation in rat kidney cells [J]. Radiat Res, 2007, 167(4): 454-464. doi: 10.1667/RR0545.1
    [105] SONG Y, SALBU B, TEIEN H C, et al. Hepatic transcriptomic profiling reveals early toxicological mechanisms of uranium in Atlantic salmon (Salmo salar) [J]. BMC Genomics, 2014, 15: 694. doi: 10.1186/1471-2164-15-694
    [106] TISSANDIE E, GUEGUEN Y, LOBACCARO J M A, et al. Enriched uranium affects the expression of vitamin D receptor and retinoid X receptor in rat kidney [J]. Journal of Steroid Biochemistry and Molecular Biology, 2008, 110(3-5): 263-268. doi: 10.1016/j.jsbmb.2007.11.002
    [107] TISSANDIE E, GUEGUEN Y, LOBACCARO J M A, et al. In vivo effects of chronic contamination with depleted uranium on vitamin D-3 metabolism in rat [J]. Biochimica Et Biophysica Acta-General Subjects, 2007, 1770(2): 266-272. doi: 10.1016/j.bbagen.2006.10.006
    [108] HAN S I, KIM Y S, KIM T H. Role of apoptotic and necrotic cell death under physiologic conditions [J]. BMB Reports, 2008, 41(1): 1-10. doi: 10.5483/BMBRep.2008.41.1.001
    [109] HAO Y H, LIU C, HUANG J W, et al. Ghrelin protects against depleted uranium-induced apoptosis of MC3T3-E1 cells through oxidative stress-mediated p38-mitogen-activated protein kinase pathway [J]. Toxicology and Applied Pharmacology, 2016, 290: 116-125. doi: 10.1016/j.taap.2015.10.022
    [110] HAO Y H, REN J, LIU C, et al. Zinc protects human kidney cells from depleted uranium-induced apoptosis [J]. Basic & Clinical Pharmacology & Toxicology, 2014, 114(3): 271-280.
    [111] PIERREFITE-CARLE V, SANTUCCI-DARMANIN S, BREUIL V, et al. Effect of natural uranium on the UMR-106 osteoblastic cell line: Impairment of the autophagic process as an underlying mechanism of uranium toxicity [J]. Archives of Toxicology, 2017, 91(4): 1903-1914. doi: 10.1007/s00204-016-1833-5
    [112] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国推荐性国家标准: 地下水质量标准 GB/T 14848—2017[S]. 北京: 中国标准出版社, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. National Standard (Recommended) of the People's Republic of China: Standard for groundwater quality. GB/T 14848—2017[S]. Beijing: Standards Press of China, 2017(in Chinese).

    [113] 中华人民共和国卫生部, 中国国家标准化管理委员会. 中华人民共和国国家标准: 生活饮用水卫生标准 GB 5749—2006[S]. 北京: 中国标准出版社, 2007.

    Ministry of Health of the People's Republic of China, Standardization Administration of the People's Republic of China. National Standard (Mandatory) of the People's Republic of China: Standards for drinking water quality. GB 5749—2006[S]. Beijing: Standards Press of China, 2007(in Chinese).

    [114] SELDÉN A I, LUNDHOLM C, EDLUND B, et al. Nephrotoxicity of uranium in drinking water from private drilled wells [J]. Environmental Research, 2009, 109(4): 486-494. doi: 10.1016/j.envres.2009.02.002
    [115] LING L, ZHANG W X. Enrichment and encapsulation of uranium with iron nanoparticle [J]. Journal of the American Chemical Society, 2015, 137(8): 2788-2791. doi: 10.1021/ja510488r
    [116] WANG X, CHEN L, BAI Z, et al. In vivo uranium sequestration using a nanoscale metal–organic framework [J]. Angewandte Chemie International Edition, 2021, 60(3): 1646-1650. doi: 10.1002/anie.202012512
    [117] ZHANG H L, LIU W, LI A, et al. Three mechanisms in one material: Uranium capture by a polyoxometalate-organic framework through combined complexation, chemical reduction, and photocatalytic reduction [J]. Angewandte Chemie (International Ed. in English), 2019, 58(45): 16110-16114. doi: 10.1002/anie.201909718
    [118] KEENER M, HUNT C, CARROLL T G, et al. Redox-switchable carboranes for uranium capture and release [J]. Nature, 2020, 577(7792): 652-655. doi: 10.1038/s41586-019-1926-4
    [119] WANG X M, WU S Q, GUAN J W, et al. 3-hydroxy-2-pyrrolidinone as a potential bidentate ligand for in vivo chelation of uranyl with low cytotoxicity and moderate decorporation efficacy: A solution thermodynamics, structural chemistry, and in vivo uranyl removal survey [J]. Inorganic Chemistry, 2019, 58(5): 3349-3354. doi: 10.1021/acs.inorgchem.8b03442
    [120] WANG X, DAI X, SHI C, et al. A 3,2-Hydroxypyridinone-based decorporation agent that removes uranium from bones in vivo [J]. Nature Communications, 2019, 10(1): 2570. doi: 10.1038/s41467-019-10276-z
  • 加载中
图( 2) 表( 1)
计量
  • 文章访问数:  8473
  • HTML全文浏览数:  8473
  • PDF下载数:  262
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-02-18
  • 刊出日期:  2021-06-27

地下水铀污染与饮用水中铀的健康风险

    通讯作者: E-mail:mingxu@rcees.ac.cn
  • 1. 国科大杭州高等研究院,环境学院,杭州,310024
  • 2. 中国科学院生态环境研究中心,环境化学与生态毒理学国家重点实验室,北京,100085
  • 3. 中国科学院大学,北京,100049
基金项目:
国家自然科学基金(21922611),中国科学院青年创新促进会(2019042),中国科学院B类先导科技专项培育项目(XDPB2004)和中国科学院生态环境研究中心臭氧追因与控制专项项目(RCEES-CYZX-2020)资助

摘要: 铀广泛存在于地壳中,是一种重要的战略资源。受自然和人为因素影响,铀可以被释放到天然水体中,造成地下水的铀污染,进而带来潜在的生态环境与人体健康风险。作为一种锕系元素,铀同时具有放射毒性与化学毒性。由于铀的天然同位素均具有较长的半衰期,且自然环境中铀的人体暴露具有低剂量、长周期的特点,地下水铀污染的健康风险主要体现为化学毒性。为更好地了解地下水铀污染的研究现状,本文综述了近年来针对地下水铀污染的最新研究进展。首先,简要概括了铀的物理化学性质和地质分布特征,以及地下水铀污染的主要来源。其次,重点介绍了饮用水铀暴露的人体健康风险及毒性作用机理。最后,对饮用水铀暴露的毒理健康研究相关的问题与挑战进行了展望。

English Abstract

  • 锕系元素包括锕(Ac)、钍(Th)、镤(Pa)、铀(U)、镎(Np)、钚(Pu)、镅(Am)、锔(Cm)、锫(Bk)、锎(Cf)、锿(Es)、镄(Fm)、钔(Md)、锘(No)和铹(Lr)。锕系元素具有放射性,如232Th、239Pu和241Am的半衰期分别为1.4×1010年、2.4×104年和432年[1]。在自然环境中,除地壳含量较高的钍和铀能够形成矿床外,其他锕系元素的自然储量很少,大部分锕系元素通过人类活动被释放到自然环境中[2]

    作为一种广泛分布的锕系元素,铀(uranium, U)具有3种天然同位素,即234U、235U和238U,它们的半衰期分别达到2.45×105年、7.04×108年和4.47×109[3]。在自然环境中,铀通常以二氧化铀(UO2)、八氧化三铀(U3O8)、铀酰离子(UO22+)等化学形态存在于岩石、土壤或水环境[4]。地壳中铀的丰度约为2.3 mg·kg−1,而土壤中铀的含量可达0.7—10.7 mg·kg−1[5]。铀具有非常重要的战略与经济价值,是核能发电的主要原料,因此铀的资源开采、纯化提取、废水处理等方面已被广泛研究[3]。另一方面,铀的环境释放与污染会导致人体暴露风险,因此其环境健康问题也一直备受关注。

    受地质或人为活动等因素影响,铀可以被释放到水、土壤和空气中,造成环境铀污染。其中,有关水环境的铀污染研究最为广泛,包括地质条件、铀矿开采、农业活动等因素都可能会造成水体的铀污染,继而破坏生态环境(表1)[6]。铀既具有放射毒性,也具有化学毒性。尽管已有大量科学研究证实铀进入机体后,可导致肾、骨骼、肺、肝、脑、生殖系统等组织器官的损伤[6],然而国内有关饮用水铀污染的环境健康研究仍有待广泛和深入地开展(图1)。为更好地了解铀的环境暴露与人体健康风险,本文将重点综述我国地下水铀污染的研究现状,对地下水铀污染可能导致的人体健康危害进行梳理,并讨论地下水铀污染的潜在环境健康问题。

  • 地质因素造成的地下水铀污染现象广泛存在于全球各国,如中国、美国、德国、印度、蒙古、巴西(图1)[14-19]。在自然风化及水流侵蚀作用下,岩层、土壤和沉积物中的铀会被释放,并进入水环境。例如,在我国黄土高原地区,严重的水土侵蚀导致黄河河水中溶解态铀的浓度达到2.04—7.83 μg·L−1,远高于全球其它河流[20]。山西大同盆地区域的沉积岩与沉积物具有较高的铀含量,造成当地浅层地下水的铀污染,最高可达288 μg·L−1[11, 21]。此外,其它干旱/半干旱沉积盆地也存在地下水的铀污染现象,如贵德盆地、银川盆地、呼和浩特盆地、松嫩盆地和河套盆地[22-23]。在美国加利福尼亚高平原和中央山谷地区,地下水中的硝酸盐会造成矿物中铀的溶解与释放,导致地下水的铀污染,局部铀浓度分别高达2674 μg·L−1和5400 μg·L−1[15]。花岗岩是造成地下水铀污染的一个重要地质因素,其铀含量可以达到2.2—15 mg·kg−1[24]。据报道,西班牙Ridaura盆地区域开采花岗岩深井地下水的铀含量达到37.7 μg·L−1,可能主要来源于当地花岗岩释放的铀[25]。印度拉贾斯坦邦和古吉拉特邦的冲积含水层以花岗岩和变质岩为主,这也造成当地121座饮用水井中的45座存在铀污染现象[16]。此外,砾岩、片岩、片麻岩、云母、方解石、大理石、磷矿石、煤矿等也是地下水中铀的潜在释放源[26]

    在天然水环境中,铀主要以(UO2)3(OH)5+、UO2CO3、UO2(CO3)34−、Ca2UO2(CO3)3等化学形态存在[27]。铀的化学形态与水环境行为主要受各种水化学因素影响,如离子类型、离子强度、酸碱度、氧化还原条件等[28]。例如,四川绵远河流经磷酸盐矿区,河水中铀的形态主要为UO2(HPO4)22−、Ca2UO2(CO3)3和UO2(CO3)34−,受pH和磷酸盐浓度显著影响。当pH<7.6时,磷酸盐矿附近河水中铀的主要形态为UO2(HPO4)22−,而沉积物中碳酸钙矿物和弱碱性条件(pH 7.6—9.5)会促进Ca2UO2(CO3)3的形成,但强碱性条件(pH 9.6)会促进Ca2UO2(CO3)3转化为UO2(CO3)34−[29]。通常,地下水中晶质铀矿(UO2)和水铀矿((UO2)6O2(OH)8·6H2O)的溶解性差,迁移能力低,而氧化条件和碱性磷酸盐或碳酸盐有助于铀酰络合物的形成,并增强其迁移能力[30]。例如,一项针对山西大同盆地的研究发现,在高氧化性、偏碱性的地下水环境中,铀酰离子(UO22+)是最主要的化学形态,易被铁氧化物吸附,并与碳酸盐形成高可溶性络合物,具有更好的迁移性[11]。地下水的铀浓度还受沉积物显著影响. 据报道,内蒙古河套平原地下水的铀浓度与沉积物中铁锰氧化物的含量相关[10]

  • 除地质因素外,人类活动也是地下水铀污染的另一个主要来源,如采矿活动、含磷肥料施用等[31-32]。目前,我国铀矿以北方陆相盆地砂岩型铀矿床和南方海相盆地碳硅泥岩型铀矿床为主[33]。包括花岗岩型、火山岩型、砂岩型和碳硅泥岩型等,分布于广东、江西、内蒙古、新疆等地[7, 10, 12, 34]。铀矿的开采、堆浸及尾矿处理过程会产生高浓度含铀废渣与废水,如果处置不当,便会造成铀污染,威胁周边的生态环境安全[35]。据报道,广东省某铀矿废水的铀平均浓度达到2304 μg·L−1,而周围受污染的地表水铀浓度达到233—619 μg·L−1[36]。另一项针对某铀尾矿周边地下水的研究发现,受铀矿开采废石和矿砂的影响,尾矿库周边地下水铀含量介于50—3360 μg·L−1,证实该区域地下水存在铀污染现象[37]。此外,其它类型矿床的开采活动也可能造成地下水的铀污染,如煤矿与磷矿开采。据报道,国内煤的平均铀含量约为2.43 mg·kg−1,但个别煤矿的铀含量甚至超过200 mg·kg−1[38-39]。因此,煤矿的开采活动也常伴随着铀的环境释放与污染[40-41]。与之类似,磷矿的开采过程也可能会造成铀污染。例如,一项研究发现,四川绵远河河水的平均铀浓度为1.64 μg·L−1,高于世界河流的平均浓度(0.51 μg·L−1),可能由沿岸地质因素与磷矿山开发活动共同导致[9]

    除采矿活动外,农业活动中磷肥施用量的增加也可能会造成农田与地下水的铀含量升高[31, 42]。据报道,含磷矿物肥料的平均铀含量介于6—149 mg·kg−1,远高于不含磷的矿物肥料(<1.3 mg·kg−1)与粪肥(<2.6 mg·kg−1)[43]。在1951年至2011年期间,由于施用磷肥,德国农业用地累计释放的铀达到约14000吨,造成农业用地的地下水铀浓度比森林地区高3倍至17倍[31]。另一项研究也证实,在1983年至2006年期间,新西兰农田土壤中铀含量的升高与磷肥施用直接相关[42]

  • 在自然环境中,人体的铀暴露途径主要包括呼吸、摄入和皮肤接触。例如,气溶胶或颗粒态的铀可进入呼吸道,沉积在肺部,造成肺损伤[6]。溶解态的铀则可通过饮食被机体吸收,进入组织脏器,诱发各种健康风险。人体每日可通过水和食物摄入约0.9—1.5 μg铀,其中约0.1%—6%被小肠吸收后,以UO22+的形式与血液中的柠檬酸盐、碳酸氢盐或蛋白分子结合,经血液循环到人体各器官和组织[3, 44]。正常人体内约含90 μg的铀,主要分布于骨骼(66%)、肝脏(16%)、肾脏(8%)及其它组织(10%)[45]。长期、过量的铀累积会影响人体的骨骼发育、肝肾功能或其它生理过程,进而导致健康问题与疾病风险(图2)。

    因此,铀的人体暴露与健康风险一直受到关注(图1)。一项近期研究发现,在江西省某铀矿周边采集的稻米样品的铀平均含量为1.39 ng·g−1,超标率达79.55%[46]。在新疆伊犁地区某煤矿周边,当地居民头发和尿液的铀平均浓度分别为156.2 ng·g−1和202.6 ng·L−1,显著高于一般人群(4—57 ng·L−1)[47]。在内蒙古白云鄂博矿区,当地居民尿液的铀浓度也要高于其它区域[48]

    地下水是我国主要的饮用水来源之一。在中国北方,地下水提供了65%的饮用水与33%的灌溉用水[49]。为控制饮用水中铀带来的人体健康风险,世界卫生组织(WHO)和美国环境保护署(EPA)均建议饮用水中的铀浓度不应超过30 μg·L−1[50]。相较于其它类型铀污染,地下水铀污染的空间范围更广,产生的环境暴露与健康风险也更高。例如,一项最新研究表明,对于内蒙古河套平原地区的居民,饮用水中铀的健康风险仅次于砷[51]。在美国加利福尼亚高平原和中央山谷地区,约有22375 km2的地下水超出了WHO和美国EPA所建议的安全阈值,影响约190万当地居民的饮用水安全[15]。尽管如此,饮用水中铀的健康风险与安全阈值仍存在诸多不确定性。近期,我们已针对环境铀暴露的健康风险进行了系统的回顾[6],本部分将简要介绍经饮用水的铀暴露可能导致的健康危害。

  • 肾脏是铀的主要累积与排泄器官,也是首要的毒性损伤器官。目前,已有多项流行病学研究表明,长期经饮用水的铀暴露可能会造成肾脏功能损伤[52]。例如,一项加拿大的流行病学研究发现,长期使用受铀污染的井水(2—781 μg·L−1)作为饮用水源的人群,肾脏功能会受到影响,尿液中葡萄糖、碱性磷酸酶(ALP)与β2微球蛋白(BMG)的水平均与铀的摄入相关[53]。另一项针对芬兰南部地区325名当地居民的研究发现,由于长期饮用受铀污染的井水(6—135 μg·L−1),他们尿液中铀的中位数浓度达到13 ng·mmol−1肌酐,并与钙和磷酸盐的分泌显著相关,表明肾脏功能受到一定影响[54]。此外,多项动物实验研究也证实,长期经饮用水的铀暴露会引起肾小管细胞死亡,造成肾脏损伤[55-56]

  • 铀是一种亲骨元素,人体内约80%—90%的铀会沉积于骨骼,且骨骼的铀含量与年龄相关[57-59]。因此,长期的环境暴露可以导致铀的骨骼蓄积,并可能影响骨骼代谢与发育过程。据报道,在芬兰南部地区,长期经饮用水的铀暴露(6—116 μg·L−1)与男性体内Ⅰ型胶原羧基端肽(CTx)和骨钙素水平升高呈现相关性,表明经饮用水的铀摄入可能具有致骨骼毒性的风险[60]。此外,动物实验也证实,经饮用水的铀暴露会抑制成骨细胞分化、干扰骨骼物质代谢、诱导骨细胞死亡、造成骨细胞数量降低,从而导致骨骼生长延迟、骨体积和骨密度降低及骨骼脆性增加等问题[61-62]

  • 作为机体内最为重要的代谢与解毒器官之一,肝脏容易受到铀的影响,体现出多种毒性损伤效应。例如,铀可通过影响细胞色素P450酶的表达与活性,扰乱肝脏正常的物质代谢过程,导致肝脏功能异常[63-65]。铀还可以通过破坏肝脏的抗氧化系统,造成肝脏的氧化应激损伤[66]。尽管如此,目前关于经饮用水铀暴露引起的肝脏损伤风险与毒性效应还鲜有报道。

  • 生殖系统对铀很敏感,过量的铀暴露会造成生殖细胞退化、精子质量变差、生育能力降低等风险[67-68]。一项最新的流行病学研究表明,在2012年至2014年期间,武汉地区8500名待产妇女的铀暴露水平与孕期缩短及产后出血风险呈显著相关性[69]。动物实验也证实,长期经饮用水铀暴露会影响精子与卵子的数量和形态,改变遗传物质稳定性,导致生育能力降低[70-71]

  • 铀能够进入神经系统,并通过破坏抗氧化系统、干扰神经递质释放、影响基因表达与蛋白活性等途径,造成行为异常、睡眠周期紊乱、记忆损伤等问题[72-74]。例如,经9个月饮用水铀暴露后,大鼠脊髓内的运动神经元数量和SMN1基因表达发生显著降低,胶质细胞数量增加,表明经饮用水的铀暴露不仅会造成脊髓运动神经元损伤,还会诱导神经系统的炎症反应[75]

  • 长期环境铀暴露的毒性效应还可能与心血管疾病、癌症、肥胖等健康问题有关[76-78]。例如,近期一项武汉地区的流行病学研究表明,在高血压患者人群中,环境铀暴露可能会导致肾小球滤过率降低,且存在性别间的差异[79]

  • 作为一种环境重金属,铀同时具有放射毒性与化学毒性。过往大部分研究都主要关注铀的放射毒性,例如国内多家科研机构已针对浓缩铀(enriched uranium, EU)和贫铀(depleted uranium, DU)的健康危害开展过比较广泛的科学研究[80-82]。当前已有大量论文与报告针对铀的放射毒性危害与机理进行过系统的回顾与总结[45, 83-84],因此将不在本文中再针对铀的放射毒性进行系统介绍。另一方面,环境铀暴露的化学毒性风险与健康危害不容忽视,尤其目前对其化学毒性作用机理的了解相对较少,仍缺乏充分的科学认知与深入探索。相较于EU和DU,天然铀(natural uranium, NU)的环境暴露具有长周期、低剂量的特点,放射性较低[45]。近期,诸多研究均表明,NU的人体健康风险主要体现为化学毒性[6],如经饮用水的铀暴露。因此,本部分将重点梳理和介绍铀的化学毒性作用机理。

  • 铀以α衰变为主,可以释放α粒子、β粒子和λ射线,并产生放射性风险[45]。由于α粒子穿透性差,天然铀的放射性风险以人体内照射为主,例如摄入受污染的食品和饮用水、吸入气溶胶等[85]。铀的放射线可引起机体内生物大分子或其它分子的破坏与电离。例如,铀的放射线会破坏DNA分子内碱基,导致其单链或双链结构断裂,进而造成基因突变、染色体损伤等,或破坏蛋白分子的结构与活性,并影响其正常的生物功能。同时,铀的放射线可以与细胞内的水分子、氧分子等作用,产生自由基等强氧化性物质,对细胞与机体造成氧化损伤[84]。因此,过量的天然铀暴露具有一定的放射毒性风险,会给遗传、发育、代谢等重要生命过程带来健康风险,甚至导致疾病的发生[86]

  • 氧化应激指生物体受到外界干扰,体内氧化还原平衡被打破,细胞内活性氧水平增加,生物大分子受到活性氧攻击,从而引起细胞和组织的损伤[87]。据报道,铀能通过Fenton或类Fenton反应直接诱导活性氧自由基的产生[88]。乙酸铀酰还可促进肝脏细胞内谷胱甘肽快速氧化、活性氧生成、脂质过氧化和线粒体膜电位降低,造成肝脏细胞的氧化应激损伤[89]。此外,铀还能够影响细胞内抗氧化酶的表达水平和活性。例如,经乙酸铀酰暴露后,大鼠肾脏细胞内的Nrf2信号通路被抑制,降低其内源性硫化氢(H2S)的生成、谷胱甘肽水平以及超氧化物歧化酶和过氧化氢酶活性,导致肾脏细胞氧化损伤[90]

  • 铀可通过多种作用方式影响遗传物质的稳定性,导致基因损伤。例如,一项研究发现UO22+能显著增加DNA的氧化损伤,证实UO22+诱导产生的活性氧自由基可以破坏DNA分子[91]。UO22+还可与细胞内的DNA分子形成加合物,破坏其分子结构[92]。此外,硝酸铀酰暴露还可通过抑制人支气管上皮细胞内DNA修复蛋白表达(ATM、BRCA1、RPA80和EXO1),干扰DNA双链断裂的修复过程,加重DNA损伤[93]

  • 在生理环境中,UO22+可以直接与蛋白分子中的羧基、氨基等化学基团结合,影响其分子结构和生物活性[94]。例如,UO22+可与C反应蛋白结合,影响其Ca2+结合与转运能力[95]。UO22+还可与Ca2+竞争结合α-淀粉酶的络合位点,抑制其酶活性[96]。另一方面,蛋白分子也会参与机体内铀的累积、代谢、分布等过程,影响铀的体内行为与生物毒性效应。例如,转铁蛋白和铁蛋白可能参与铀的机体吸收和分布过程[97-99],胎球蛋白-A可能参与铀的骨骼累积过程[100-101]

  • 铀可以影响炎症相关分子的表达与信号通路,并激活免疫细胞与炎症反应。据报道,经40 mg·L−1的饮用水铀暴露6个月后,大鼠体内的2型环氧合酶(COX-2)、白细胞介素-1β (IL-1β)和白细胞介素-10 (IL-10)的基因表达水平显著上调,且中性粒细胞数量增加[102]。此外,铀暴露还可以造成小鼠巨噬细胞和CD4+ T细胞内的白细胞介素-5 (IL-5)和IL-10的基因表达水平上调,表明炎症反应的发生[103]

  • 过量的铀会干扰正常的生理过程,打破代谢平衡,引起代谢紊乱。据报道,经饮用水的铀暴露后,大鼠肾脏细胞内发生铁沉积,表明铀可能影响肾脏的铁代谢稳态[104]。此外,铀还可影响能量和糖的代谢、维生素D代谢、Ca2+代谢等重要过程[105-107]

  • 细胞死亡过程可以清除有害和严重受损的细胞,对维持机体内环境稳定,防止坏死细胞对组织造成更严重的损伤具有重要生理作用[108]。一旦铀暴露引起细胞毒性损伤,不能被及时有效地修复,将会造成不可逆的细胞死亡过程。据报道,UO22+能通过诱导Fas受体和配体过表达,抑制细胞色素C和凋亡抑制因子的线粒体释放,激活caspase-9、caspase-8和caspase-3的表达,最终引起细胞凋亡[109-110]。另一项研究则发现,铀暴露能够增加线粒体内活性氧的水平,进而激活UMR-106成骨细胞的自噬过程[111].

  • 综上所述,在自然环境中,多种地质与人为因素均可以造成地下水的铀污染,进而给饮用水安全带来隐患。尽管如此,目前对饮用水中铀的人体健康风险还没有形成明确的结论,存在很多不确定性,需要在未来的研究中进行深入思考与探索:

    (1)自1998年起,针对饮用水中铀的安全阈值,WHO已进行过多次调整,说明随科学发现的增多,有关铀的人体健康风险的认识也在逐渐变化,评价依据愈加完善[50]。尽管如此,依然需要更多的流行病学与实验研究进一步论证饮用水中铀的人体健康风险,给出更合理的安全标准。特别是,目前我国的《地下水质量标准(GB/T 14848—2017)》、《生活饮用水卫生标准(GB 5749-2006)》中都还不包括对铀含量的限制要求,亟待完善[112-113]

    (2)近年来,越来越多的研究开始关注我国地下水中铀的污染现状、铀污染区域居民的暴露风险、铀暴露影响人体健康与疾病等问题。然而,目前国内的基础研究数据仍非常有限(图1),对于不同区域地下水铀污染的情况缺乏充分的了解与足够的重视,人群暴露风险底数不清,不利于生态环境污染的治理与饮用水安全的保障。

    (3)尽管已有不少流行病学和实验研究证实了铀暴露的潜在健康危害,但经长期、低剂量饮用水铀暴露的人体健康风险与毒性效应仍存在不少争论[114]。因此,未来需要更多的科学证据,才能更好地理解铀暴露的毒性效应,获得更明确的科学结论,例如经饮用水摄入铀如何引起肾脏功能的异常,是否会导致慢性肾脏病(CKD)。

    (4)相较于其它广受关注的环境污染重金属,如砷、汞和镉,锕系元素(如铀和钚)的化学毒性作用机理研究进展相对缓慢,深度不足。例如,细胞死亡过程存在多种作用机理,包括坏死、凋亡、自噬、焦亡、铁死亡等,但有关铀触发细胞死亡的潜在分子作用机理研究还非常有限,并且细胞死亡引起的毒性效应也不清楚。因此,针对现实存在的环境健康问题,有必要加强铀及其它锕系元素的化学毒性作用机理与健康风险研究,建立高水平的环境毒理与健康效应研究平台,填补国内外的研究空白。

    (5)目前,针对环境与机体内铀的富集、提取、清除、促排等方面的研究属于前沿科学领域,例如铀结合分子和材料的设计合成[115-120]。因此,有必要更深入地揭示铀的体内代谢分布、生物分子结合、毒性作用机理等方面的潜在规律,将有利于开发出更安全可靠的技术方法或分子材料,推动相关研究领域的进展及科研成果的转化应用。

参考文献 (120)

目录

/

返回文章
返回