-
根据溴原子取代个数及位置的不同,溴酚(BPs)可分为单溴酚(BP)、二溴酚(DBP)、三溴酚(TBP)、四溴酚(TeBP)和五溴酚(PBP)。环境中的BPs存在天然来源和人为来源,BPs作为重要的海洋风味物质,可以由海洋生物天然合成[1],而作为诸多溴代阻燃剂和木材防腐剂的合成原料,BPs也被大量人工合成[2-3];此外,BPs还可由含溴有机物经氯化消毒、光降解等多种环境转化过程产生[4-5]。研究表明,BPs具有较强的内分泌干扰效应,如甲状腺激素效应和雌激素效应等[6-7],也能损伤动物的肝脏、肾脏等组织[8-9]。在大气、地表水、甚至人体血清等多种介质都有检出[4, 10-11]。我国广东省某电子垃圾拆解地的土壤及拆解车间的颗粒物中均检测到BPs[12-13] 。BPs具有较强的挥发性,海洋中大量的BPs通过挥发作用进入大气,然而,人们对空气中BPs的赋存特征了解十分有限。
多种树木的树皮已经被用作空气被动采样器,用以评价空气中的污染物浓度水平。但有研究表明,树皮中有机污染物的富集与树皮样品的脂质含量、蛋白质含量以及树皮形貌等多种因素相关,因此不同种类的树皮对污染物的富集存在一定的差异性[14]。而且,用树皮作为被动采样器评估大气环境污染时,有机污染物除了来自当地的污染源排放外,城市间的传输也可能对其分布造成一定影响,并可通过“全球蒸馏效应”迁移至各个地区,在高纬度或高海拔的低温条件下还可能发生冷凝富集作用[15-16]。因此,为全面了解我国大气环境中溴酚的赋存情况,同时为避免由树皮种类不同对环境污染物评估造成的不确定性,本次研究只选择了一种树种,即广泛用于被动采样和大气污染评估的松树开展研究,在我国内陆及沿海地区的9个城市,针对在我国具有广泛分布的油松进行树皮样品采集,对其中的BP单体进行测定,以探究BPs在我国大气中的赋存和分布特征。
我国不同城市油松树皮中溴酚的赋存特征
Occurrence of bromophenols in pine bark from different cities in China
-
摘要: 本文采集了我国内陆和沿海地区多个城市的油松树皮样品,利用超高效液相色谱-质谱(UPLC-MS/MS)联用技术,分析了样品中19种溴酚的赋存特征。结果表明,树皮中4-BP、2,4,6-TBP、PBP等3种溴酚分布最广,检出率分别为72%、41%和38%,19种溴酚的总浓度水平在0.69—38 ng·g−1,平均值为6.6 ng·g−1。溴酚的分布存在较大的单体差异及城市差异,沿海城市树皮样品中的浓度高于内陆城市,树皮样品中的溴酚含量整体上随海拔高度的增加而升高。而溴酚的单体分布特征和地区分布差异均与其人为源和天然源密切相关。Abstract: In this study, pine bark samples were collected from several cities in inland and coastal regions of China. The occurrence of 19 bromophenols were analyzed by Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS/MS). The results showed that 4-BP, 2,4,6-TBP and PBP were the most frequently determined bromophenols in bark with the detection frequencies of 72%, 41% and 38%, respectively. The total concentrations of all detectable bromophenols ranged from 0.69 ng·g−1 to 38 ng·g−1, with an average value of 6.6 ng·g−1. Different spatial and profile distributions of bromophenols were found in different cities. The bromophenols in coastal cities showed relatively high concentrations. And the levels of BPs were generally increased with the increasing of elevation. The differences were closely related to their anthropogenic and natural sources.
-
Key words:
- bromophenols /
- occurrence /
- source analysis
-
表 1 样品信息及编号
Table 1. Sample information and number
采样地点Sample sites 树皮Bark 采样地点Sample sites 树皮Bark 云南昭通市鲁甸县刘家山 ZT-1 河南洛阳市吉利区潘安公园 LY-2 云南昭通市鲁甸县老地坡 ZT-2 河南洛阳市吉利区西霞院 LY-3 云南昭通市鲁甸县转角楼 ZT-3 山东东营市玉带河公园 DY-1 云南迪庆白马雪山山底(海拔2800 m) DQ-1 山东东营市森林湿地公园 DY-2 云南迪庆白马雪山山腰(海拔3495 m) DQ-2 山东东营市东城银座广场 DY-3 云南迪庆白马雪山山顶(海拔4125 m) DQ-3 山东烟台市芝罘区西炮台公园 YT-1 西藏林芝市波密县中学旁(海拔2600 m) LZ-1 山东烟台市芝罘区月亮湾景区 YT-2 西藏林芝市波密县中学旁(海拔2900 m) LZ-2 山东烟台市芝罘区金沙滩公园 YT-3 陕西西安市二环南路东段 XA-1 广东深圳市罗湖区翠景山庄 SZ-1 陕西西安市电子科技大学 XA-2 广东深圳市罗湖区东湖公园 SZ-2 陕西西安市大慈恩寺 XA-3 广东深圳市罗湖区洪湖公园 SZ-3 河南南阳市镇平县坤元宫 NY-1 广东深圳市宝安区西湾红树林公园 SZ-4 河南南阳市镇平县人民政府 NY-2 广东深圳市宝安区石环路 SZ-5 河南南阳市镇平县利欣药厂 NY-3 广东深圳市南山区西丽生态公园 SZ-6 河南洛阳市吉利区四十三中 LY-1 表 2 我国部分城市各采样点油松树皮中的∑BPs含量
Table 2. Concentrations of ∑BPs in pine barks from different sampling sites in 9 cities of China
城市
City区域类型
Region type∑BPs浓度/(ng·g−1 dw)
Concentration of ∑BPs平均值/(ng·g−1)
Mean标准偏差/(ng·g−1)
Standard deviation σ样点1 样点2 样点3 样点4 样点5 样点6 昭通 内陆城市 1.8 4.6 3.0 — — — 3.1 1.4 迪庆 内陆城市 13 9.8 38 — — — 20 15 林芝 内陆城市 5.7 6.7 — — — — 6.2 0.69 西安 内陆城市 4.1 1.9 0.91 — — — 2.3 1.6 南阳 内陆城市 0.83 4.0 1.2 — — — 2.0 1.7 洛阳 内陆城市 6.4 0.89 7.4 — — — 4.9 3.5 东营 沿海城市 14 6.6 4.6 — — — 8.2 4.7 烟台 沿海城市 3.3 11 9.5 — — — 8.1 4.2 深圳 沿海城市 11 0.79 5.5 0.69 7.0 6.3 5.2 3.9 注:“—”表示采样点未设置. -
[1] GRIBBLE G W. The natural production of organobromine compounds [J]. Environmental Science and Pollution Research, 2000, 7(1): 37-49. doi: 10.1065/espr199910.002 [2] CHEN G S, KONSTANTINOV A D, CHITTIM B G, et al. Synthesis of polybrominated diphenyl ethers and their capacity to induce CYP1A by the ah receptor mediated pathway [J]. Environmental Science & Technology, 2001, 35(18): 3749-3756. [3] HOWE P D, DOBSON S, MALCOLM H M. 2, 4, 6-Tribromophenol and other simple brominated phenols [J]. IPCS Concise International Chemical Assessment Documents, 2005(66): 8-9. [4] SIM W J, LEE S H, LEE I S, et al. Distribution and formation of chlorophenols and bromophenols in marine and riverine environments [J]. Chemosphere, 2009, 77(4): 552-558. doi: 10.1016/j.chemosphere.2009.07.006 [5] WANG X W, HU X F, ZHANG H, et al. Photolysis kinetics, mechanisms, and pathways of tetrabromobisphenol A in water under simulated solar light irradiation [J]. Environmental Science & Technology, 2015, 49(11): 6683-6690. [6] BUTT C M, STAPLETON H M. Inhibition of thyroid hormone sulfotransferase activity by brominated flame retardants and halogenated phenolics [J]. Chemical Research in Toxicology, 2013, 26(11): 1692-1702. doi: 10.1021/tx400342k [7] OLSEN C M, MEUSSEN-ELHOLM E T M, HOLME J A, et al. Brominated phenols: Characterization of estrogen-like activity in the human breast cancer cell-line MCF-7 [J]. Toxicology Letters, 2002, 129(1/2): 55-63. [8] KOEN Y M, HAJOVSKY H, LIU K, et al. Liver protein targets of hepatotoxic 4-bromophenol metabolites [J]. Chemical Research in Toxicology, 2012, 25(8): 1777-1786. doi: 10.1021/tx3002675 [9] BRUCHAJZER E, SZYMANSKA J A, PIOTROWSKI J K. Acute and subacute nephrotoxicity of 2-bromophenol in rats [J]. Toxicology Letters, 2002, 134(1/2/3): 245-252. [10] TAKIGAMI H, SUZUKI G, HIRAI Y, et al. Brominated flame retardants and other polyhalogenated compounds in indoor air and dust from two houses in Japan [J]. Chemosphere, 2009, 76(2): 270-277. doi: 10.1016/j.chemosphere.2009.03.006 [11] DUFOUR P, PIRARD C, CHARLIER C. Determination of phenolic organohalogens in human serum from a Belgian population and assessment of parameters affecting the human contamination [J]. Science of the Total Environment, 2017, 599/600: 1856-1866. doi: 10.1016/j.scitotenv.2017.05.157 [12] HAN W, WANG S, HUANG H L, et al. Simultaneous determination of brominated phenols in soils [J]. Journal of Environmental Sciences, 2013, 25(11): 2306-2312. doi: 10.1016/S1001-0742(12)60298-8 [13] REN Z F, BI X H, HUANG B, et al. Hydroxylated PBDEs and brominated phenolic compounds in particulate matters emitted during recycling of waste printed circuit boards in a typical e-waste workshop of South China [J]. Environmental Pollution, 2013, 177: 71-77. doi: 10.1016/j.envpol.2013.01.034 [14] LIU Y W, HOU X W, CHEN W F, et al. Occurrences of perfluoroalkyl and polyfluoroalkyl substances in tree bark: Interspecies variability related to chain length [J]. Science of the Total Environment, 2019, 689: 1388-1395. doi: 10.1016/j.scitotenv.2019.06.454 [15] MIAO Y C, GUO J P, LIU S H, et al. The climatology of low-level jet in Beijing and Guangzhou, China [J]. Journal of Geophysical Research:Atmospheres, 2018, 123(5): 2816-2830. doi: 10.1002/2017JD027321 [16] WEISS P, LORBEER G, SCHARF S. Persistent organic pollutants in remote Austrian forests-altitude-related results [J]. Environmental Science and Pollution Research, 1998: 46-52. [17] HU J C, WU J, XU C Y, et al. Preliminary investigation of polychlorinated dibenzo-p-dioxin and dibenzofuran, polychlorinated naphthalene, and dioxin-like polychlorinated biphenyl concentrations in ambient air in an industrial park at the northeastern edge of the Tibet-Qinghai Plateau, China [J]. Science of the Total Environment, 2019, 648: 935-942. doi: 10.1016/j.scitotenv.2018.08.241 [18] GAI N, PAN J, TANG H, et al. Selected organochlorine pesticides and polychlorinated biphenyls in atmosphere at Ruoergai high altitude prairie in eastern edge of Qinghai-Tibet Plateau and their source identifications [J]. Atmospheric Environment, 2014, 95: 89-95. doi: 10.1016/j.atmosenv.2014.06.005 [19] GAI N, PAN J, TANG H, et al. Organochlorine pesticides and polychlorinated biphenyls in surface soils from Ruoergai high altitude prairie, east edge of Qinghai-Tibet Plateau [J]. Science of the Total Environment, 2014, 478: 90-97. doi: 10.1016/j.scitotenv.2014.01.002 [20] YUAN H D, JIN J, BAI Y, et al. Concentrations and distributions of polybrominated diphenyl ethers and novel brominated flame retardants in tree bark and human hair from Yunnan Province, China [J]. Chemosphere, 2016, 154: 319-325. doi: 10.1016/j.chemosphere.2016.03.132 [21] TIAN M, CHEN S J, WANG J, et al. Plant uptake of atmospheric brominated flame retardants at an E-waste site in Southern China [J]. Environmental Science & Technology, 2012, 46(5): 2708-2714. [22] WANG P, ZHANG Q H, WANG Y W, et al. Altitude dependence of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in surface soil from Tibetan Plateau, China [J]. Chemosphere, 2009, 76(11): 1498-1504. doi: 10.1016/j.chemosphere.2009.06.045 [23] CHI X Y, LIU J Y, YU M, et al. Analysis of bromophenols in various aqueous samples using solid phase extraction followed by HPLC-MS/MS [J]. Talanta, 2017, 164: 57-63. doi: 10.1016/j.talanta.2016.11.010 [24] XIONG J K, LI G Y, AN T C, et al. Emission patterns and risk assessment of polybrominated diphenyl ethers and bromophenols in water and sediments from the Beijiang River, South China [J]. Environmental Pollution, 2016, 219: 596-603. doi: 10.1016/j.envpol.2016.06.021 [25] YAO Y M, CHANG S, SUN H W, et al. Neutral and ionic per- and polyfluoroalkyl substances (PFASs) in atmospheric and dry deposition samples over a source region (Tianjin, China) [J]. Environmental Pollution, 2016, 212: 449-456. doi: 10.1016/j.envpol.2016.02.023 [26] YANG M, QI H, JIA H L, et al. Polybrominated diphenyl ethers in air across China: Levels, compositions, and gas-particle partitioning [J]. Environmental Science & Technology, 2013, 47(15): 8978-8984. [27] HE C, JIN J, LI G Y, et al. Exchange of organohalogen compounds between air and tree bark in the Yellow River region [J]. Chemosphere, 2016, 153: 478-484. doi: 10.1016/j.chemosphere.2016.03.089 [28] BENDIG P, VETTER W. UV-induced formation of bromophenols from polybrominated diphenyl ethers [J]. Environmental Science & Technology, 2013, 47(8): 3665-3670. [29] CHEN L G, MAI B X, BI X H, et al. Concentration levels, compositional profiles, and gas-particle partitioning of polybrominated diphenyl ethers in the atmosphere of an urban city in South China [J]. Environmental Science & Technology, 2006, 40(4): 1190-1196. [30] CHEN Y J, ZHANG A Q, LI H X, et al. Concentrations and distributions of polybrominated diphenyl ethers (PBDEs) in surface soils and tree bark in Inner Mongolia, Northern China, and the risks posed to humans [J]. Chemosphere, 2020, 247: 125950. doi: 10.1016/j.chemosphere.2020.125950