-
随着现代工业的迅猛发展,更多的工业废水和人工合成物质不断地流入水体,造成水体污染严重[1]。重金属是水源水和处理水中最重要的污染物之一[2],主要来自电镀、采矿、冶金、化工等工业,具有潜在的危害性,特别是汞、镉、铅等重金属具有显著的生物毒性[3]。如果未经处理或处理不彻底的废水渗入到自然环境中,对环境的污染是持久性的,它无法被降解和破坏,当水中的重金属达到一定含量时,将会破坏生态,毒害水体生物[4-5]。随着绿色环保的可持续发展战略的提出,重金属废水处理迫在眉睫[6]。目前,重金属废水的处理方法有沉淀法、电化学法、吸附法、膜分离法、离子交换法等[7]。在实际处理过程中,采用组合工艺对重金属废水进行处理,尽管最终可以使出水重金属浓度达标排放,但是处理成本较高,且不能回收产生的沉淀污泥。本文介绍的流化床结晶造粒技术具有传质速率高、占地面积小、不产生污泥、颗粒含水率低等优点,其相关概述见图1,涵盖了该技术的优良特性、影响因素和参数、应用领域及其优点,流化床结晶造粒技术在国内外已取得了成功探究和实际应用,它在重金属废水处理领域有着较好的应用前景。
液固流化床结晶造粒技术捕集水体中的重金属
Liquid solid fluidized bed crystallization granulation technology for capturing heavy metals in water
-
摘要: 流化床结晶(FBC)造粒技术是一种强化诱导结晶的过程,可以同时实现水体净化和回收捕集水体中有价资源的目标。该技术具有传质速率高、不产生污泥、结晶颗粒含水率低、易于固液分离、绿色环保的优点。本文综述了技术的发展背景、工艺基础、工作原理,分析了进水浓度、沉淀药剂、载体、水力条件等因素对FBC处理重金属废水效果的影响。综述了国内外FBC造粒技术处理镍、铜、锌、铅、砷等单一废水和多金属混合废水的研究进展,应用研究表明该技术处理重金属废水是无害化、资源化的优良工艺。不仅解决重金属废水的排放问题,还将水体中的重金属转化为金属盐,可再利用于金属行业,对环境十分友好。最后指出了目前研究中存在的问题以及今后的研究方向和重点,对该技术的发展进行了展望。Abstract: Fluidized bed crystallization (FBC) granulation technology refers to the process of enhanced induced crystallization, which can simultaneously achieve the goal of water purification and recovery of valuable resources in water. This technology have multiple advantages, namely, high mass transfer rate, no sludge, low moisture content of crystalline particles, easy solid-liquid separation and environmental protection. This work summarized the development background, process basis and working principle of the technology by analyzing the influence of influent concentration, precipitant, carrier, hydraulic conditions and other factors on the treatment of heavy metal wastewater by FBC. Moreover, the research progress and optimal process conditions of single wastewater and multi metal mixed wastewater treatment by FBC granulation technology at home and abroad have been summarized. Used in the metal industry and being very friendly to the environment, the application research reveals that this technology is harmless and resource-base, solving heavy metal wastewater discharge problems as well as converting the heavy metals in water into metal salts. Finally, the paper sheds light on the existing problems and future research directions and made it prospective argument on the development of the technology.
-
Key words:
- fluidized-bed /
- fluidization /
- heavy metal /
- waste water /
- crystallization
-
图 3 流化床反应器示意图[22]
Figure 3. Schematic representation of the fluidized bed reactor
图 4 FBC处理高浓度砷废水工艺流程图[44]
Figure 4. Diagram of FBC process for the treatment of wastewater containing high-strength As
图 5 顺序流化床实验装置示意图[26]
Figure 5. Schematic diagram of sequential fluidized bed experimental device
图 6 实验装置示意图[28]
Figure 6. Schematic diagram of experimental device
表 1 常见重金属难溶盐的溶度积
Table 1. Solubility product of common heavy metal insoluble salt
金属
Metals沉淀物
Precipitate溶度积常数
Ksp来源
SourceNi NiCO3 1.40×10−7 [11] Ni(OH)2 5.50×10−16 [11] Cu CuCO3 1.40×10−10 [12] Cu(OH)2 4.80×10−20 [13] Cu2(OH)2CO3 5.99×10−35 [14-16] CuS 6.31×10−36 [17] Zn ZnCO3 1.46×10−10 [18] Zn5(CO3)2(OH)6 2.00×10−9 [19] Zn Zn(OH)2 3.00×10−17 [18] Pb PbCO3 7.41×10−14 [20] Pb(CO3)2(OH)2 1.58×10−19 [20] As As2S3
Ca5(AsO4)3(OH)4.00×10−29 [20] 9.10×10−39 [20] Ag Ag2CO3 7.94×10−12 [17] Mn MnCO3 2.50×10−11 [17] Mn(OH)2 2.00×10−13 [17] Ba Ba3(PO4)2 5.01×10−30 [17] Cd CdCO3 1.0×10−12 [17] Cd(OH)2 2.51×10−14 [17] Hg HgS 3.98×10−53 [17] 表 2 流化床结晶造粒技术回收重金属的应用
Table 2. Application of fluidized bed crystallization granulation technology for heavy metal recovery.
金属类型
Type of metal反应器和载体特性
Reactor and carrier properties操作条件
Operational conditions性能
Performance来源
SourceNi D: 2.1 cm,H: 240 cm
Carrier: SiO2
DC: 0.4—0.5 mmPre: Na2CO3,pH: 10
FH: 0.1 mCout Ni2+: 0.5 mg·L−1
ECS: 1.0 mm[21] Ni D: 2.5 cm,H: 100 cm
Carrier: SiO2 and CaCO3
DC: 0.21—0.30 mmCin Ni2+: 150 mg·L−1
Pre: Na2CO3,pH: 9.8
CO3:Ni= 2:1
FH: 0.6 m
Qin: 3.6 L·h−1Removal rate: 99.6% [22] Ni D: 2.5 cm,H: 160 cm
Carrier: SiO2
DC: 0.25 mmCin Ni2+: 100 mg·L−1
Pre: Na2CO3,pH: 9.68
CO3:Ni= 2:1
FH: 0.2 m
Qin: 1 mL·min−1Removal rate: 99% [34] Ni DL: 2 cm,HL: 80 cm
DU: 4 cm
HU: 20 cmCin Ni2+: 300 mg·L−1
Pre: Na2CO3,pH: 10.8
CO3:Ni= 3:1Removal rate: 97.08%
ECS: 0.25—2 mm[11] Ni HL: 80 cm
Carrier: NiOOHCin Ni2+: 1470 mg·L−1
Pre: Na2CO3,pH: 9.68
CO3:Ni= 1:1
FH: 0.5 m
Vin: 42.9 m·h−1Removal rate: 99.6%
Cout Ni2+: 2.31 mg·L−1[36] Cu D: 3 cm,H: 120 cm
Carrier: SiO2
DC: 0.25—0.42 mmCin Cu2+: 10 mg·L−1
Pre: Na2CO3,CO3:Cu= 2:1
FH: 0.45 m
Vin: 25 m·h−1Removal rate: 96% [29] Cu DL: 3 cm,HL: 50 cm
DU: 9 cm,HU: 10 cm
Carrier: SiO2
DC: 0.2—0.3 mmCin Cu2+: 100 mg·L−1
Precipitant: Na2CO3
CO3:Cu= 2:1
Vin: 13 m·h−1
HRT: 30 minRemoval rate: 90% [30] Cu HL: 80 cm
Carrier: CuCO3Cin Cu2+: 1600 mg·L−1
Pre: Na2CO3,pH: 6.0—8.0
CO3:Cu= 3:1
FH : 0.2m
HRT: 16.7 minRemoval rate: 95% [31] Cu DL: 2 cm,HL: 80 cm
DU: 4 cm,HU: 15 cm
V: 0.55 LCin Cu2+: 400 mg·L−1
Pre: Na2CO3,pH: 6.0—8.0
CO3:Cu= 3:1
Qin: 10 mL·min−1Removal rate: 92% [37] Zn Carrier: SiO2 Cin Zn2+: 45 mg·L−1
Pre: Na2CO3,pH: 7.5—8.0
FH : 2 m
Vin: 40 m·h−1Removal rate: 95%
ECS: 1—3 mm
Mc: 5%[39] Zn DL: 3 cm,HL: 50 cm
DU: 9 cm,HU: 10 cm
V: 0.55 L
Carrier: SiO2
DC: 0.2—0.3 mmCin Zn2+: 20 mg·L−1
Pre: Na2S,pH: 9.0
FH: 0.1 m
Vin: 15 m·h−1
HRT: 30 minRemoval rate: 95%
Cout Zn2+: 1.0 mg·L−1[40] Zn DL: 2 cm,HL: 80 cm
DU: 4 cm,HU: 20 cmCin Zn2+: 500 mg·L−1
Pre: Na2CO3,pH: 7.2
CO3:Zn= 1.2:1
Qin: 1.5 L·h−1Removal rate: 97.56%
Cout Zn2+: 19 mg·L−1
ECS: 0.5—1.0 mm[19] Pb D: 2.5 cm,H: 66 cm
Carrier: SiO2
DC: 0.2—0.3 mmCin Pb2+: 40 mg·L−1
Pre: Na2CO3,pH: 8—9
CO3:Pb= 3:1
Vin: 22 m·h−1
HRT: 380 minRemoval rate: 99%
Cout Pb2+: 1 mg·L−1[42] Pb D: 5.2 cm,H: 133 cm
V: 1.35 L
Carrier: PbCO3
DC: 0.053—0.062 mmCin Pb2+: 200 mg·L−1
Pre: Na2CO3,pH: 8—9
CO3:Pb= 3:1
Qin: 6 mL·min−1Removal rate: 98% [43] Pb DL: 2 cm,HL: 80 cm
DU: 4 cm,HU: 20 cm
V: 0.55 LCin Pb2+: 200 mg·L−1
Pre: Na2CO3,pH: 7
CO3:Pb= 1.2:1Cout Pb2+: 1 mg·L−1 [20] As D: 2 cm,H: 160 cm
Carrier: SiO2
DC: 0.2—0.5 mmCin As: 611 mg·L−1
Pre: Na2S,pH: 1.0
S:As= 2:1
Qin: 1.62 L·h−1Cout As: 7.2 mg·L−1
ECS: 1—3 mm[23] As D: 2 cm,H: 185 cm
V: 0.66 L
Carrier: SiO2Cin As: 200 mg·L−1
Pre: Na2S,pH: 2
Dosage C: 400 g
S:As= 2.2:1Cout As: 0.5 mg·L−1 [44] Ag D: 1.8 cm,H: 150 cm
Carrier: SiO2
DC: 0.2—0.3 mmCin Ag: 1080 mg·L−1
Pre: Na2CO3,pH: 10.2
CO3:Ag= 3:1Cout As: 10 mg·L−1
ECS: 0.6 mm[45] Mn D: 10 cm,Carrier: Manganese sand
DC: 0.4 mmCin Mn: 8.5 mg·L−1
Pre: Na2CO3,pH: 9.5
Vin: 25 m·h−1Cout Mn: 0.5 mg·L−1 [46] Ba D: 4 cm,H: 100 cm pH: 8.8
Ba:P= 1:1
Qin: 2.88 L·h−1Removal rate: 98%
ECS: 0.36 mm[47] Cd D: 2 cm,H: 240 cm
Carrier: SiO2
DC: 0.2—0.3 mmCin Cd: 2080 mg·L−1
Pre: Na2CO3。pH: 7.9
CO3:Cd= 1.6:1
FH: 1 mCout Cd: 1 mg·L−1
ECS: 1 mm[48] Hg Carrier: SiO2
DC: 0.1—0.3 mmCin Hg: 20 mg·L−1
Pre: Na2S,pH: 4—5Cout Hg: 0.002 mg·L−1
ECS: 1—3 mm[24] Polymetallic D: 14.5 cm,H: 550 cm
Carrier: SiO2Cin Ni: 510 mg·L−1
Cin Cd: 640 mg·L−1
Cin Zn: 1900 mg·L−1
pH: 7.2
Qin: 32 L·h−1Removal rate: 99%、92%、97%
Cout Ni: 7 mg·L−1
Cout Cd: 53 mg·L−1
Cout Zn: 50 mg·L−1[25] Polymetallic D: 10 cm,H: 220 cm
Carrier: SiO2
DC: 0.15—0.30 mmCin: 20 mg·L−1
Pre: Na2CO3,pH: 9.0
FH: 0.4 mRemoval rate: 95% [18] Polymetallic D: 10 cm,H: 90 cm
Carrier: SiO2
DC: 0.25—0.42 mmCin Cu: 250 mg·L−1
Cin Pb: 130 mg·L−1
Cin Ni: 130 mg·L−1
Pre: Na2CO3,pH: 8.7—9.1
FH: 0.3 mRemoval rate: 97%、96%、93%
Cout Cu: 0.5 mg·L−1
Cout Pb: 0.5 mg·L−1
Cout Ni: 0.9 mg·L−1[26] Polymetallic Carrier: SiO2
DC: 0.25 mmPre: Na2CO3
CO3: Metal= 1.2:1
Qin: 25 L·h−1
HRT: 1.8 minRemoval rate: 95% [27] Polymetallic D: 5 cm,H: 200 cm
Carrier: CaCO3
DC: 0.12—0.18 mmCin Fe: 0.94 mg·L−1
Cin Mn: 1.95 mg·L−1
Pre: NaOH,pH: 9.6
FH: 0.5 mCout Fe: 0.246 mg·L−1
Cout Mn: 0.061 mg·L−1[28] D: Reactor diameter; DL: Lower diameter; DU: Upper diameter; H: Total height of reactor; HL: Lower height; HU: Upper height; V: Reactor volume; DC: Carrier particle size; Dosage C: Carrier dosage; Cin: Influent concentration; Cout: Effluent concentration; FH: Fill Height; Pre: Precipitant; HRT: Hydraulic Retention Time; A:B: The molar ratio of A and B; Vin: Inlet flow rate; Qin: Into the liquid flow; ECS: Carrier excluded particle size; Mc: Moisture content. -
[1] 王小攀, 林璟, 张发明, 等. 重金属工业废水处理技术的研究进展 [J]. 山东化工, 2020, 49(9): 69-71,76. doi: 10.3969/j.issn.1008-021X.2020.09.025 WANG X P, LIN J, ZHANG F M, et al. Research progress of the industrial wastewater treatment technology for heavy metal [J]. Shandong Chemical Industry, 2020, 49(9): 69-71,76(in Chinese). doi: 10.3969/j.issn.1008-021X.2020.09.025
[2] SUN J, TIAN Q F, DENG N S. Notice of retraction: Harmless treatment method for the removal of heavy metals from simulative wastewater by inducing crystallization[C]//2011 5th International Conference on Bioinformatics and Biomedical Engineering. May 10-12, 2011, Wuhan, China. IEEE, 2011: 1-5. [3] 于萍, 任月明, 张密林. 处理重金属废水技术的研究进展 [J]. 环境科学与管理, 2006, 31(7): 103-105,108. doi: 10.3969/j.issn.1673-1212.2006.07.032 YU P, REN Y M, ZHANG M L. The reseachful progress on treatment techniques of heavy metal water [J]. Environmental Science and Management, 2006, 31(7): 103-105,108(in Chinese). doi: 10.3969/j.issn.1673-1212.2006.07.032
[4] HALYSH V, TRUS I, GOMELYA M, et al. Utilization of modified biosorbents based on walnut shells in the processes of wastewater treatment from heavy metal ion [J]. Journal of Ecological Engineering, 2020, 21(4): 128-133. doi: 10.12911/22998993/119809 [5] CELIK A, DEMIRBAŞ A. Removal of heavy metal ions from aqueous solutions via adsorption onto modified lignin from pulping wastes [J]. Energy Sources, 2005, 27(12): 1167-1177. doi: 10.1080/00908310490479583 [6] 孙国庆. 新型吸附剂处理重金属废水的研究进展 [J]. 智能城市, 2020, 6(11): 136-137. SUN G Q. Research progress of new adsorbents for heavy metal wastewater treatment [J]. Intelligent City, 2020, 6(11): 136-137(in Chinese).
[7] 王卓然, 王广智, 耿钰萱, 等. 电镀废水中重金属处理的研究进展 [J]. 电镀与环保, 2017, 37(1): 1-3. doi: 10.3969/j.issn.1000-4742.2017.01.001 WANG Z R, WANG G Z, GENG Y X, et al. Research progress on treatment of electroplating wastewater containing heavy metal [J]. Electroplating & Pollution Control, 2017, 37(1): 1-3(in Chinese). doi: 10.3969/j.issn.1000-4742.2017.01.001
[8] GRACE J R. Hydrodynamics of gas fluidized beds[M]//Fluidized Bed Boilers. Amsterdam: Elsevier, 1984: 13-30. [9] CHENG J X, YANG H T, FAN C L, et al. Review on the applications and development of fluidized bed electrodes [J]. Journal of Solid State Electrochemistry, 2020, 24(10): 2199-2217. doi: 10.1007/s10008-020-04786-w [10] ZHENG D, ZOU W, YAN J, et al. Coupling of contact nucleation kinetics with breakage model for crystallization of sodium chloride crystal in fluidized bed crystallizer [J]. Journal of Chemistry, 2019, 2019: 1-11. [11] BALLESTEROS F C, SALCEDO A F S, VILANDO A C, et al. Removal of nickel by homogeneous granulation in a fluidized-bed reactor [J]. Chemosphere, 2016, 164: 59-67. doi: 10.1016/j.chemosphere.2016.08.081 [12] REITERER F, JOHANNES W, GAMSJÄGER H. Semimicro determination of solubility constants: Copper(Ⅱ) carbonate and iron(Ⅱ) carbonate [J]. Microchimica Acta, 1981, 75(1/2): 63-72. [13] PATNAIK P. Handbook of inorganic chemicals[M]. New York: McGraw-Hill, 2003. [14] SCAIFE J F. The solubility of malachite [J]. Canadian Journal of Chemistry, 1957, 35(11): 1332-1340. doi: 10.1139/v57-177 [15] STELLA R, GANZERLI-VALENTINI M T. Copper ion-selective electrode for determination of inorganic copper species in fresh waters [J]. Analytical Chemistry, 1979, 51(13): 2148-2151. doi: 10.1021/ac50049a021 [16] KISELEVA I A, OGORODOVA L P, MELCHAKOVA L V, et al. Thermodynamic properties of copper carbonates—malachite Cu2(OH)2CO3 and azurite Cu3(OH)2(CO3)2 [J]. Physics and Chemistry of Minerals, 1992, 19(5): 322-333. [17] BLAIS J F, DJEDIDI Z, CHEIKH R B, et al. Metals precipitation from effluents: Review [J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2008, 12(3): 135-149. doi: 10.1061/(ASCE)1090-025X(2008)12:3(135) [18] ZHOU P, HUANG J C, LI A W F, et al. Heavy metal removal from wastewater in fluidized bed reactor [J]. Water Research, 1999, 33(8): 1918-1924. doi: 10.1016/S0043-1354(98)00376-5 [19] UDOMKITTHAWEEWAT N, ANOTAI J, CHOI A E S, et al. Removal of zinc based on a screw manufacturing plant wastewater by fluidized-bed homogeneous granulation process [J]. Journal of Cleaner Production, 2019, 230: 1276-1286. doi: 10.1016/j.jclepro.2019.05.192 [20] CHEN C S, SHIH Y J, HUANG Y H. Remediation of lead (Pb(Ⅱ)) wastewater through recovery of lead carbonate in a fluidized-bed homogeneous crystallization (FBHC) system [J]. Chemical Engineering Journal, 2015, 279: 120-128. doi: 10.1016/j.cej.2015.05.013 [21] WILMS D, VAN HAUTE A, VAN DIJK J, et al. Recovery of nickel by crystallization of nickel carbonate in a fluidized-bed reactor[M]//Water Pollution Control in Asia. Amsterdam: Elsevier, 1988: 449-456. [22] GUILLARD D, LEWIS A E. Nickel carbonate precipitation in a fluidized-bed reactor [J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5564-5569. [23] LEE M, CHANG W, HUANG C, et al. Method of arsenic immobilization in crystalline form water: US7045066 B2[P]. 05/16/2006. [24] JANSSEN C W. Process for the removal of metals, in particular heavy metals, from waste water: EP0279964 A2[P]. 12/18/1987. [25] NIELSEN P B, CHRISTENSEN T C, VENDRUP M. Continuous removal of heavy metals from FGD wastewater in a fluidised bed without sludge generation [J]. Water Science and Technology, 1997, 36(2/3): 391-397. [26] LEE C I, YANG W F. Heavy metal removal from aqueous solution in sequential fluidized-bed reactors [J]. Environmental Technology, 2005, 26(12): 1345-1353. doi: 10.1080/09593332608618613 [27] 孙杰, 赵晖, 邓南圣. 无害化诱导结晶新工艺处理重金属废水 [J]. 水处理技术, 2006, 32(9): 63-65. doi: 10.3969/j.issn.1000-3770.2006.09.017 SUN J, ZHAO H, DENG N S. A new technology for heavy metal ion removal from wastewater with a harmless treatment method [J]. Technology of Water Treatment, 2006, 32(9): 63-65(in Chinese). doi: 10.3969/j.issn.1000-3770.2006.09.017
[28] 唐章程, 黄廷林, 胡瑞柱, 等. 结晶造粒流化床同步去除水中铁、锰及硬度的中试实验 [J]. 环境工程学报, 2018, 12(11): 3090-3098. doi: 10.12030/j.cjee.201806146 TANG Z C, HUANG T L, HU R Z, et al. Simultaneous removal of iron, manganese and hardness by pellet fluidized bed reactor in pilot-scale experiment [J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3090-3098(in Chinese). doi: 10.12030/j.cjee.201806146
[29] LEE C I, YANG W F, HSIEH C I. Removal of Cu(II) from aqueous solution in a fluidized-bed reactor [J]. Chemosphere, 2004, 57(9): 1173-1180. doi: 10.1016/j.chemosphere.2004.08.028 [30] 阎中, 熊娅, 王凯军, 等. 诱导结晶工艺处理含铜废水 [J]. 化工学报, 2009, 60(10): 2603-2608. YAN Z, XIONG Y, WANG K J, et al. Copper removal by induced crystallization from copper-containing wastewater [J]. Journal of the Chemical Industry and Engineering Society of China, 2009, 60(10): 2603-2608(in Chinese).
[31] 卢明俊, 黄耀辉, 施育仁. 以流体化床结晶技术合成均质碱式碳酸铜及氧化铜结晶物之方法: TWI640477 B[P]. 11/11/2018. LU M J, HUANG Y H, SHI Y R. Method of synthesizing homogeneous granular basic cupric carbonate and copper oxide by using fluidized-bed crystallization technology: TWI640477 B[P]. 11/11/2018(in Chinese).
[32] SCHÖLLER M, V DIJK J C, V HAUTE A, et al. Recovery of heavy metals by crystallization in the pellet reactor, A promising development [J]. Studies in Environmental Science, 1988, 34: 77-90. doi: 10.1016/S0166-1116(08)71280-9 [33] UILLARD D, LEWIS A E. Optimization of nickel hydroxycarbonate precipitation using a laboratory pellet reactor [J]. Industrial & Engineering Chemistry Research, 2002, 41(13): 3110-3114. [34] OSTODES V C T, LEWIS A E. Reactive crystallization of nickel hydroxy-carbonate in fluidized-bed reactor: Fines production and column design [J]. Chemical Engineering Science, 2006, 61(5): 1377-1385. doi: 10.1016/j.ces.2005.08.038 [35] SALCEDO A F M, BALLESTEROS F C, VILANDO A C, et al. Nickel recovery from synthetic Watts bath electroplating wastewater by homogeneous fluidized bed granulation process [J]. Separation and Purification Technology, 2016, 169: 128-136. doi: 10.1016/j.seppur.2016.06.010 [36] 卢明俊, 黄耀辉. 以流体化床结晶技术从含镍废水中合成碱式氧化镍结晶物之方法: TW201938495 A[P]. 10/01/2019. LU M J, HUANG Y H. Method of synthesizing granular basic nickel oxide from nickel-contained wastewater by using fluidized-bed crystallization technology. TW201938495 A[P]. 10/01/2019(in Chinese).
[37] LERTRATWATTANA K, KEMACHEEVAKUL P, GARCIA-SEGURA S, et al. Recovery of copper salts by fluidized-bed homogeneous granulation process: High selectivity on malachite crystallization [J]. Hydrometallurgy, 2019, 186: 66-72. doi: 10.1016/j.hydromet.2019.03.015 [38] HONG X Y, ZHENG E H, SHEN X Z. Apparatus and method for sulfide crystallization of Cu and Ni using fluidized bed reactor: KR101681701 B1[P]. 12/01/2016. [39] JANSEN C. Process for removing of heavy metal from water in particular from waste water: US4764284 A[P]. 08/16/1988. [40] 杨艳, 陈坚, 马力强. 诱导结晶工艺处理含锌废水[EB/OL]. 北京: 中国科技论文在线[2012-06-12]. [2012-06-12]. YANG Y, CHEN J, MA L Q. Zinc wastewater treatment by induced crystallization[EB/OL]. Beijing: Sciencepaper Online [2012-06-12].
[41] 卢明俊, 黄耀辉. 以流体化床结晶技术合成均质含锌结晶物之方法: TW201902821 A[P]. 01/16/2019. LU M J, HUANG Y H. Method of synthesizing homogeneous zinc-containing crystals by using fluidized-bed crystallization technology: TW201902821 A[P]. 01/16/2019(in Chinese).
[42] CHEN J P, YU H. Lead removal from synthetic wastewater by crystallization in a fluidized-bed reactor [J]. Journal of Environmental Science and Health, Part A, 2000, 35(6): 817-835. doi: 10.1080/10934520009377005 [43] DE LUNA M D G, BELLOTINDOS L M, ASIAO R N, et al. Removal and recovery of lead in a fluidized-bed reactor by crystallization process [J]. Hydrometallurgy, 2015, 155: 6-12. doi: 10.1016/j.hydromet.2015.03.009 [44] HUANG C, PAN J R, LEE M, et al. Treatment of high-level arsenic-containing wastewater by fluidized bed crystallization process [J]. Journal of Chemical Technology & Biotechnology, 2007, 82(3): 289-294. [45] WILMS D, VERCAEMST K, VAN DIJK J C. Recovery of silver by crystallization of silver carbonate in a fluidized-bed reactor [J]. Water Research, 1992, 26(2): 235-239. doi: 10.1016/0043-1354(92)90223-Q [46] NOMURA J, SUGITA Y. The manganese-containing water treatment method and apparatus: JP3729365 B2[P]. 12/21/2005. [47] SU C C, REANO R L, DALIDA M L P, et al. Barium recovery by crystallization in a fluidized-bed reactor: Effects of pH, Ba/P molar ratio and seed [J]. Chemosphere, 2014, 105: 100-105. doi: 10.1016/j.chemosphere.2014.01.005 [48] DOTREMONT C, WILMS D, DEVOGELAERE D, et al. Recovery of cadmium by crystallization of cadmium carbonate in a fluidized-bed reactor[M]//Chemistry for the Protection of the Environment. Springer, Boston, MA, 1991: 741-751.